Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T00:14:03.599Z Has data issue: false hasContentIssue false

SubRiemannian Geometry on the Sphere ๐•Š3

Published online by Cambridge University Press:ย  20 November 2018

Ovidiu Calin
Affiliation:
Department of Mathematics, Eastern Michigan University, Ypsilanti, MI, 48197, U.S.A. e-mail: [email protected]
Der-Chen Chang
Affiliation:
Department of Mathematics, Georgetown University, Washington, D.C., 20057, U.S.A. and National Centre for Theoretical Sciences, Mathematics Division, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC e-mail: [email protected]
Irina Markina
Affiliation:
Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen 5008, Norway e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the โ€˜Save PDFโ€™ action button.

We discuss the subRiemannian geometry induced by two noncommutative vector fields which are left invariant on the Lie group ${{\mathbb{S}}^{3}}$.

Type
Research Article
Copyright
Copyright ยฉ Canadian Mathematical Society 2012

References

[1] Beals, R., Gaveau, B., and Greiner, P. C.. On a geometric formula for the fundamental solution of subelliptic Laplacians. Math. Nachr. 181(1996), 81โ€“163.Google Scholar
[2] Beals, R., Gaveau, B., and Greiner, P. C., Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians. I, II, III. Bull. Sci. Math. 21(1997), no. 1, 1โ€“36, no. 2, 97โ€“149, no. 3, 195โ€“259.Google Scholar
[3] Beals, R., Gaveau, B., and Greiner, P. C., Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(2000), no. 7, 633โ€“689.Google Scholar
[4] Beals, R. and Greiner, P. C.: Calculus on Heisenberg Manifolds. Annals of Mathematics Studies 119. Princeton University Press, Princeton, NJ, 1988.Google Scholar
[5] Calin, O., Chang, D.-C. and Greiner, P. C., Geometric Analysis on the Heisenberg group and Its Generalizations. A MS/IP Studies in Advanced Mathematics 40, International Press, Somerville, MA, 2007.Google Scholar
[6] Calin, O., D.-C., Chang and Greiner, P. C., Geometric mechanics on the Heisenberg group. Bull. Inst. Math. Acad. Sinica 33(2005), no. 3, 185โ€“252.Google Scholar
[7] Chang, D.-C. and Markina, I., Geometric analysis on quaternion H-type groups. J. Geom. Anal. 16(2006), no. 2, 265โ€“294.Google Scholar
[8] Chow, W.-L.. รœber Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117(1939), 98โ€“105.Google Scholar
[9] Gaveau, B., Principe de moindre action, propagation de la chaleur et estimรฉes souselliptiques sur certains groupes nilpotent. Acta Math. 139(1977), 95โ€“153.Google Scholar
[10] Strichartz, R.. Sub-Riemannian geometry. J. Differential Geom. 24(1986), no. 2, 221โ€“263.Google Scholar