Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:39:15.929Z Has data issue: false hasContentIssue false

Some Theorems on Absolute Summability

Published online by Cambridge University Press:  20 November 2018

M. S. Macphail*
Affiliation:
Carleton College, Ottawa
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A summation method defined by the linear transformation

will be called an l-l method if ∑|yr| < ∞ whenever ∑|xk| < ∞; if in addition we have ∑yr = ∑xk whenever ∑|xk| < ∞ we shall say the method is absolutely regular. (It should be observed that we are dealing with series-to-series methods, not sequence-to-sequence as usual.)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

1. Agnew, R. P., Summability of power series, Amer. Math. Monthly, vol. 53 (1946), 251259.Google Scholar
2. Banach, S., Théorie des opérations linéaires (Warsaw, 1932).Google Scholar
3. Knopp, K. and Lorentz, G. G., Beiträge zur absoluten Limitierung, Archiv der Mathematik, vol. 2 (1949), 1016.Google Scholar
4. Macphail, M. S., Euler'Knopp summability of classes of convergent series, Amer. J. Math., vol. 68 (1946), 449450.Google Scholar
5. Mazur, S., Eine Anwendung der Théorie der Operationen bei der Untersuchung der Toeplitzschen Limitierungsverfahren, Studia Mathematica, vol. 2 (1930), 4050.Google Scholar