Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T07:49:05.319Z Has data issue: false hasContentIssue false

Some Properties of the q-Hermite Polynomials

Published online by Cambridge University Press:  20 November 2018

WM. R. Allaway*
Affiliation:
Lakehead University, Thunder Bay, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Heine [7, p. 93] gave the following representation for the Legendre Polynomial {Pn(x)}n=o

where fo,n = 1 and

Szegö [7, p. 96] generalized this result to the Ultraspherical Polynomial set ﹛Cnλ(x)﹜n=o and obtained

where

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Allaway, Wm. R., The identification of a class of orthogonal polynomial sets, Ph.D. Thesis, University of Alberta (1972).Google Scholar
2. Al-Salam, W. A. and Chihara, T. S., Convolution of orthogonal polynomials, SIAM J. on Math. Anal. 7 (1976), 1628.Google Scholar
3. Carlitz, L., Some polynomials related to the theta functions, Ann. Mat. Pura Appl. 41 (1955), 359373.Google Scholar
4. Hewitt, E. and Stromberg, K., Real and abstract analysis (Springer-Verlag, New York, 1969).Google Scholar
5. Rainville, E. D., Special functions (Macmillan, New York, 1965).Google Scholar
6. Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318343.Google Scholar
7. Szegô, G., Orthogonal polynomials, Amer. Math. Soc. Colloquium Publication 23 (Amer. Math. Soc, Providence, 1975).Google Scholar
8. Szegô, G., Ein Beitrag zur Théorie der Thetafunktionen, Sitzangsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse (1926). 242251.Google Scholar