Article contents
Slice-torus Concordance Invariants and Whitehead Doubles of Links
Published online by Cambridge University Press: 22 May 2019
Abstract
In this paper we extend the definition of slice-torus invariant to links. We prove a few properties of the newly-defined slice-torus link invariants: the behaviour under crossing change, a slice genus bound, an obstruction to strong sliceness, and a combinatorial bound. Furthermore, we provide an application to the computation of the splitting number. Finally, we use the slice-torus link invariants and the Whitehead doubling to define new strong concordance invariants for links, which are proven to be independent of the corresponding slice-torus link invariant.
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200727093107950-0174:S0008414X19000294:S0008414X19000294_inline1.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200727093107950-0174:S0008414X19000294:S0008414X19000294_inline2.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200727093107950-0174:S0008414X19000294:S0008414X19000294_inline3.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200727093107950-0174:S0008414X19000294:S0008414X19000294_inline4.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200727093107950-0174:S0008414X19000294:S0008414X19000294_inline5.png?pub-status=live)
- 5
- Cited by