Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:41:49.387Z Has data issue: false hasContentIssue false

Sharp Norm Estimates for the BergmanOperator From Weighted Mixed-norm Spaces to Weighted Hardy Spaces

Published online by Cambridge University Press:  20 November 2018

Carme Cascante
Affiliation:
Dept. Matemática Aplicada i Análisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain e-mail: [email protected], [email protected], [email protected]
Joan Fàbrega
Affiliation:
Dept. Matemática Aplicada i Análisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain e-mail: [email protected], [email protected], [email protected]
Joaquín M. Ortega
Affiliation:
Dept. Matemática Aplicada i Análisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain e-mail: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give sharp norm estimates for the Bergman operator acting from weighted mixed-norm spaces to weighted Hardy spaces in the ball, endowed with natural norms.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Ahern, P. and Bruna, J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of Cn. Rev. Mat. Iberoamericana 4(1988), no. 1,123153. http://dx.doi.org/10.4171/RMI/66 Google Scholar
[2] Anderson, T. C. and Vagharshakyan, A., A simple proof of the sharp weighted estimate for Calderon-Zygmund operators on homogeneous spaces. J. Geom. Anal. 24(2014), 12761297. http://dx.doi.org/10.1007/s12220-012-9372-7 Google Scholar
[3] Békollé, D., Inégalités à poids pour le projecteur de Bergman dans la boule unité de Cn. Stud. Math. 71(1981), 305323.Google Scholar
[4] Benedek, A. and Panzone, R., The space Lt, with mixed norm. Duke Math. J. 28(1961), 301324.Google Scholar
[5] Buckley, S. M., Estimates for operators on weighted spaces and reverse Jensen inequalities. Trans. Amer. Math. Soc. 340(1993), no. 1. 253272. http://dx.doi.org/10.2307/2154555 Google Scholar
[6] Cascante, C. and Ortega, J. M., Carleson measures for weighted Hardy-Sobolev spaces. Nagoya Math. J. 186(2007), 2968.Google Scholar
[7] Cascante, C., Weak trace measures on Hardy-Sobolev spaces. Math. Res. Lett. 20(2013), no. 2, 235254. http://dx.doi.org/10.4310/MRL.2013.v20.n2.a3 Google Scholar
[8] Christ, M., A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(1990), 601628.Google Scholar
[9] Cohn, W. S., The Bergman projection and vector-valued Hardy spaces. Michigan Math. J. 44(1997), no. 3, 509528. http://dx.doi.org/10.1307/mmj71029005785 Google Scholar
[10] Coifman, R. R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51(1974), 241250.Google Scholar
[11] Cruz-Uribe, D., Martell, J.M., and Perez, C., Sharp weighted estimates for classical operators. Adv.Math. 229(2012), no. 1, 408441. http://dx.doi.Org/10.1016/j.aim.2011.08.013 Google Scholar
[12] Damian, W., Lerner, A. K., and Perez, C., Sharp weighted bounds for multilinear maximal functions and Calderon-Zygmund operators. J. Fourier Anal. Appl. 21(2015), no. 1,161181. http://dx.doi.Org/10.1007/s00041-014-9364-z Google Scholar
[13] Dragicevic, O., Grafakos, L., Pereyra, M. C., and Petermichl, S., Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces. Publ. Mat. 49(2005), no. 1, 7391. http://dx.doi.Org/10.5565/PUBLMAT_49105_03 Google Scholar
[14] Duoandikoetxea, J., Fourier analysis. Graduate Studies in Mathematics 29. American Mathematical Society, Providence, RI, 2001.Google Scholar
[15] Duoandikoetxea, J., Extrapolation of weights revisited: new proofs and sharp bounds. J. Funct. Anal. 260(2011),no. 6, 18861901.http://dx.doi.Org/10.1016/j.jfa.2010.12.015 Google Scholar
[16] Fefferman, R. and Pipher, J., Multiparameter operators and sharp weighted inequalities. Amer. J. Math. 119(1997), no. 2, 337369.Google Scholar
[17] Hollenbeck, B. and Verbitsky, I. E., Best constants for the Riesz projection. J. Funct. Anal. 175(2000),370392.http://dx.doi.org/10.1006/jfan.2000.3616 Google Scholar
[18] Hunt, R., Muckenhoupt, B., and Wheeden, R., Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176(1973), 227251.Google Scholar
[19] Hytônen, T. P., The sharp weighted bound for general Calderon-Zygmund operators. Ann. of Math. (2) 175(2012), no. 3, 14731506. http://dx.doi.Org/10.4007/annals.2012.175.3.9 Google Scholar
[20] Hytônen, T. P. and Kairema, A., Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(2012), no. 1, 133. http://dx.doi.org/10.4064/cm126-1-1 Google Scholar
[21] Jawerth, B. and Torchinsky, A., The strong maximal function with respect to measures. Studia Math. 80(1984), no. 3, 261285.Google Scholar
[22] Kairema, A., Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat. 57(2013), no. 1, 356. http://dx.doi.org/10.5565/PUBLMAT_57113_01 Google Scholar
[23] Lee, J. and Rim, K. S., Weighted norm inequalities for pluriharmonic conjugate functions. J. Math. Anal. Appl. 268(2002), no. 2, 707717. http://dx.doi.org/10.1006/jmaa.2001.7731 Google Scholar
[24] Lerner, A. K., A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. London Math. Soc. 42(2010) no. 5 843856. http://dx.doi.Org/10.1112/blms/bdqO42 Google Scholar
[25] Lerner, A. K.,Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 226(2011), no. 5, 39123926. http://dx.doi.Org/10.1016/j.aim.2O10.11.00 Google Scholar
[26] Lerner, A. K.,A local mean oscillation decomposition and some of its applications. Function spaces, approximation, inequalities and linearity. Lect. of the Spring School in Anal., Matfyzpress, Prague (2011), 71106.Google Scholar
[27] Lerner, A. K.,A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN (2013), no 14, 31593170 Google Scholar
[28] Lerner, A. K.,On sharp aperture-weighted estimates for square functions. J. Fourier Anal. Appl. 20(2014), no 4, 784800. http://dx.doi.org/10.1007/s00041-014-9333-6 Google Scholar
[29] Luecking, D. H., Representation and duality in weighted spaces of analytic functions. Indiana Univ. Math. J. 34(1985), no. 2, 319336. http://dx.doi.Org/10.1512/iumj.1985.34.34019 Google Scholar
[30] Luque, T., Perez, C., and Rela, E., Optimal exponents in weighted estimates without examples. Math. Res. Lett. 22(2015), no. 1, 183201. http://dx.doi.org/10.4310/MRL.2015.v22.n1.a10 Google Scholar
[31] Pavlovic, M., On the Littlewood-Paley g-function and Calderôn's area theorem. Expo. Math. 31(2013), no. 2, 169195. http://dx.doi.Org/10.1016/j.exmath.2O13.01.006 Google Scholar
[32] Pott, S. and Reguera, M. C., Sharp Békollé estimates for the Bergman projection. J. Funct. Anal. 265 (2013), no. 12,32333244. http://dx.doi.Org/10.1016/j.jfa.2013.08.018 Google Scholar
[33] Rudin, W., Function theory in the unit ball of ℂn. Grundlehren der Mathematischen Wissenschaften 241, Springer-Verlag, New York, 1980.Google Scholar
[34] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series 43. Monographs in Harmonic Analysis III, 1993.Google Scholar
[35] Tchoundja, E., Carleson measures for the generalized Bergman spaces via a T(l)-type theorem. Ark. Mat. 46(2008), 377406. http://dx.doi.org/10.1007/s11512-008-0070-4 Google Scholar
[36] Wilson, M., The intrinsic square function. Rev. Mat. Iberoam. 23(2007), no. 3, 771791. http://dx.doi.org/10.4171/RMI/512 Google Scholar