Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T00:47:54.120Z Has data issue: false hasContentIssue false

Rotation Algebras and the Exel Trace Formula

Published online by Cambridge University Press:  20 November 2018

Jiajie Hua
Affiliation:
College of Mathematical Physics and Information engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China Department of Mathematics, University of Oregon, Eugene, Oregon 97402, USA. e-mail: [email protected]
Huaxin Lin
Affiliation:
Department of Mathematics, East China Normal University, Shanghai, 200062, China Department of Mathematics, University of Oregon, Eugene, Oregon 97402, USA. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that if $u$ and $v$ are any two unitaries in a unital ${{C}^{*}}$–algebra such that $\left\| uv\,-\,vu \right\|\,<\,2$ and $uv{{u}^{*}}{{v}^{*}}$ commutes with $u$ and $v$, then the ${{C}^{*}}$–subalgebra ${{A}_{u,v}}$ generated by $u$ and $v$ is isomorphic to a quotient of some rotation algebra ${{A}_{\theta }}$, provided that ${{A}_{u,v}}$ has a unique tracial state. We also show that the Exel trace formula holds in any unital ${{C}^{*}}$–algebra. Let $\theta \,\in \,\left( -1/2,\,1/2 \right)$ be a real number. For any $\in \,>\,0$, we prove that there exists $\delta \,>\,0$ satisfying the following: if $u$ and $v$ are two unitaries in any unital simple ${{C}^{*}}$–algebra $A$ with tracial rank zero such that

$$\left\| uv\,-\,{{e}^{2\pi i\theta }}vu \right\|\,<\,\delta \,\,\,\text{and}\,\,\frac{1}{2\pi i}\tau \left( \log \left( uv{{u}^{*}}{{v}^{*}} \right) \right)\,=\,\theta ,$$

for all tracial states $\tau$ of $A$, then there exists a pair of unitaries $\widetilde{u}$ and $\widetilde{v}$ in $A$ such that

$$\widetilde{u}\widetilde{v}\,=\,{{e}^{2\pi i\theta }}\widetilde{v}\widetilde{u},\,\,\,\,\,\,\,\left\| u\,-\,\widetilde{u} \right\|\,<\,\in \,\,\,\text{and}\,\,\left\| v\,-\,\widetilde{v} \right\|\,<\,\in.$$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Berg, I. D. and Davidson, K. R., Almost commuting matrices and the Brown–Douglas–Fillmore theorem. Bull. Amer. Math. Soc. (N.S.) 16(1987), no. 1, 97–100.http://dx.doi.org/10.1090/S0273-0979-1987-15471-1 Google Scholar
[2] Boca, F. P., Rotation algebras and continued fractions. In: Operator algebras, operator theory and applications, Oper. Theory Adv. Appl., 181, Birkhäuser Verlag, Basel, 2008, pp. 121142.Google Scholar
[3] Choi, M. D., Almost commuting matrices need not be nearly commuting. Proc. Amer. Math. Soc. 102(1988), no. 3, 529533. http://dx.doi.org/10.1090/S0002-9939-1988-0928973-3 Google Scholar
[4] Choi, M. D., Elliott, G. A., and Yui, N., Gauss polynomials and the rotation algebra. Invent. Math. 99(1990), no. 2, 225246. http://dx.doi.org/10.1007/BF01234419 Google Scholar
[5] Davidson, K. R., Almost commuting Hermitian matrices. Math. Scand. 56(1985), no. 2, 222240.Google Scholar
[6] Eilers, S. and Loring, T. A., Computing contingencies for stable relations. Internat. J. Math. 10(1999), no. 3, 301326. http://dx.doi.org/10.1142/S0129167X99000112 Google Scholar
[7] Eilers, S., Loring, T. A., and Pedersen, G. K., Stability of anticommutation relations: an application of noncommutative CW complexes. J. Reine Angew. Math. 499(1998), 101143.Google Scholar
[8] Eilers, S., Loring, T. A., and Pedersen, G. K., Morphisms of extensions of C*–algebras: pushing forward the Busby invariant. Adv. Math. 147(1999), no. 1, 74109. http://dx.doi.org/10.1006/aima.1999.1834 Google Scholar
[9] Elliott, G. A. and Evans, D. E., The structure of the irrational rotation C*–algebra. Ann. of Math.(2) 138(1993), no. 3, 477501. http://dx.doi.org/10.2307/2946553 Google Scholar
[10] Exel, R., Rotation numbers for automorphisms of C*–algebras. Pacific J. Math. 127(1987), no. 1, 3189. http://dx.doi.org/10.2140/pjm.1987.127.31 Google Scholar
[11] Exel, R., The soft torus and applications to almost commuting matrices. Pacific J. Math. 160(1993), no. 2, 207217. http://dx.doi.org/10.2140/pjm.1993.160.207 Google Scholar
[12] Exel, R. and Loring, T. A., Almost commuting unitary matrices. Proc. Amer. Math. Soc. 106(1989), no. 4, 913915. http://dx.doi.org/10.1090/S0002-9939-1989-0975641-9 Google Scholar
[13] Exel, R. and Loring, T. A., Invariants of almost commuting unitaries. J. Funct. Anal. 95(1991), no. 2, 364376.http://dx.doi.org/10.1016/0022-1236(91)90034-3 Google Scholar
[14] Friis, P. and Rørdam, M., Almost commuting self-adjoint matrices—a short proof of Huaxin Lin’s theorem. J. Reine Angew. Math. 479(1996), 121131.Google Scholar
[15] Gong, G. and Lin, H., Almost multiplicative morphisms and almost commuting matrices. J. Operator Theory 40(1998), no. 2, 217275.Google Scholar
[16] Halmos, P. R., Some unsolved problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. Edinburgh Sect. A 76(1976/77), no. 1, 6776.Google Scholar
[17] de la Harpe, P. and Skandalis, G., Determinant associé à une trace sur une algèbre de Banach. Ann. Inst. Fourier (Grenoble) 34(1984), no. 1, 241260. http://dx.doi.org/10.5802/aif.958 Google Scholar
[18] Høegh–Krohn, R. and Skjelbred, T., Classification of C*–algebras admitting ergodic actions of the two-dimensional torus. J. Reine Angew. Math. 328(1981), 18.http://dx.doi.org/10.1515/crll.1981.328.1 Google Scholar
[19] Li, L., ,C*–algebra homomorphisms and KK–theory. K–Theory 18(1999), no. 2, 161172.http://dx.doi.org/10.1023/A:1007743325440 Google Scholar
[20] Lin, H., Almost commuting selfadjoint matrices and applications. In: Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, American Mathematical Society, Providence, RI, 1997, pp. 193233.Google Scholar
[21] Lin, H., When almost multiplicative morphisms are close to homomorphisms. Trans. Amer.Math. Soc. 351(1999), no. 12, 50275049. http://dx.doi.org/10.1090/S0002-9947-99-02310-7 Google Scholar
[22] Lin, H., The tracial topological rank of C*–algebra. Proc. London Math. Soc. (3) 83(2001), no. 1, 199234. http://dx.doi.org/10.1112/plms/83.1.199 Google Scholar
[23] Lin, H., A separable Brown–Douglas–Fillmore theorem and weak stability. Trans. Amer. Math. Soc. 356(2004), no. 7, 28892925. http://dx.doi.org/10.1090/S0002-9947-04-03558-5 Google Scholar
[24] Lin, H., Classification of homomorphisms and dynamical systems. Trans. Amer. Math. Soc. 359(2007), no. 2, 859895. http://dx.doi.org/10.1090/S0002-9947-06-03932-8 Google Scholar
[25] Lin, H., The range of approximate unitary equivalence classes of homomorphisms from AH–algebras. Math. Z. 263(2009), no. 4, 903922. http://dx.doi.org/10.1007/s00209-008-0445-z Google Scholar
[26] Lin, H., Asymptotic unitary equivalence and classification of simple amenable C*–algebras. Invent. Math. 183(2011), no. 2, 385450. http://dx.doi.org/10.1007/s00222-010-0280-9 Google Scholar
[27] Loring, T. A., K–theory and asymptotically commuting matrices. Canad. J. Math. 40(1988), no. 1, 197–216. http://dx.doi.org/10.4153/CJM-1988-008-9 Google Scholar
[28] Loring, T. A., When matrices commute. Math. Scand. 82(1998), no. 2, 305–319.Google Scholar
[29] Loring, T. A., Quantitative K–theory related to spin Chern numbers. SIGMA 10(2014), 077, 25 pages. http://dx.doi.org/10.3842/SIGMA.2014.077 Google Scholar
[30] Pimsner, M. and Voiculescu, D., Exact sequences for K–groups and Ext–groups of certain crossed product C*–algebras. J. Operator Theory 4(1980), no. 1, 93–118.Google Scholar
[31] Rieffel, M. A., The cancellation theorem for projective modules over irrational rotation C*–algebras. Proc. London Math. Soc. (3) 47(1983), no. 2, 285–302. http://dx.doi.org/10.1112/plms/s3-47.2.285 Google Scholar
[32] Rosenthal, P., Research problems: Are almost commuting matrices near commuting matrices? Amer. Math. Monthly 76(1969), no. 8, 925–926. http://dx.doi.org/10.2307/2317951 Google Scholar
[33] Voiculescu, D., Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci. Math. (Szeged) 45(1983), no. 1–4, 429–431.Google Scholar