Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:37:26.806Z Has data issue: false hasContentIssue false

Representation of Linear Functionalson Köthe Spaces

Published online by Cambridge University Press:  20 November 2018

G. G. Lorentz
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kothe spaces, in the terminology of Diendonné [2], are certain spaces X of real valued integrable functions. In this paper we consider the problem of representation of continuous linear functional on vector valued Kothe spaces. The elements of a Kôthe space X(B) are functions with values in a Banach space B (see §2).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Birkhoff, G., Lattice theory (New York, 1948).Google Scholar
2. Dieudonné, J., Sur les espaces de Köthe, J. d'Analyse Math., 1 (1951), 81115.Google Scholar
3. Dieudonné, J. , Sur le théorème de Lebesgue-Nikodym V, Can. J. Math., 8 (1951), 129139.Google Scholar
4. Ellis, H. W. and Halperin, I., Lp spaces and their conjugates, Proc. Royal Soc. Canada (3), 46 (1952), 123.Google Scholar
5. Kantorovitch, L. V., Lineare halbgeordnete Rdume, Mat. Sbornik (2), 44 (1937), 121168.Google Scholar
6. Kantorovitch, L. V., Linear operations in semi-ordered spaces I, Mat. Sbornik (7), 49 (1940), 209284.Google Scholar
7. Kantorovitch, L. V. and Vulich, B. S., Sur la représentation des opérations linéaires, Compositio Math., 5 (1938), 119165.Google Scholar
8. Kantorovitch, L. V., Vulich, B. S., and Pinsker, A. G., Functional analysis in semi-ordered spaces (Moscow-Leningrad, 1950) (Russian).Google Scholar
9. Köthe, G., Die Teilraume eines linearen Koordinatenraumes, Math. Ann., 114 (1937), 99125.Google Scholar
10. Lorentz, G. G., Some new functional spaces, Ann. Math. (2), 51 (1950), 3755.Google Scholar
11. Lorentz, G. G., On the theory of spaces A, Pacific J. Math., 1 (1951), 411430.Google Scholar
12. Schatten, R., A theory of cross-spaces (Princeton, Ann. Math. Studies, no. 26, 1950).Google Scholar
13. Halperin, I., Function spaces, Can. J. Math., 5 (1953), 273288.Google Scholar