Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T19:08:56.118Z Has data issue: false hasContentIssue false

Representation of certain Linear Operators in Hilbert Space

Published online by Cambridge University Press:  20 November 2018

Bernard Niel Harvey*
Affiliation:
California State College, Long Beach, California University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.

In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1971

References

1. Akhiezer, N. I. and Glazman, I. M., Theory of linear operators in Hilbert space, Vols. I and II, translated from the Russian by Nestell, Merlynd (Ungar, New York, 1961/63).Google Scholar
2. Brown, A. and Pearcy, C., Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162166.Google Scholar
3. Dunford, N., Spectral operators, Pacific J. Math. 4 (1954), 321354.Google Scholar
4. Dunford, N., Spectral theory. II: Resolutions of the identity, Pacific J. Math. 2 (1952), 559614.Google Scholar
5. Džrbašjan, M. M., Integral transforms and representations of functions in the complex domain (Izdat. “Nauka”, Moscow, 1966).Google Scholar
6. Evans, G. C., The logarithmic potential: Discontinuous Dirichlet and Neumann problems, Amer. Math. Soc. Colloq. Publ., Vol. 6 (Amer. Math. Soc, New York, 1927).Google Scholar
7. Foguel, S. R., The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 5165.Google Scholar
8. Halmos, P. R., Introduction to Hilbert space and the theory of spectral multiplicity (Chelsea, New York, 1957).Google Scholar
9. Halmos, P. R., Measure theory (Van Nostrand, Princeton, N. J., cl950, reprinted 1966).Google Scholar
10. Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities (Cambridge, at the University Press, 1967).Google Scholar
11. Hoffman, K., Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis (Prentice-Hall, Englewood Cliffs, N. J., 1962).Google Scholar
12. Iohvidov, I. S., G-isometric and J-semiunitary operators in Hilbert space, Uspehi Mat. Nauk 20 (1965), no. 3 (123), 175181. (Russian)Google Scholar
13. Iohvidov, I. S. and Kreĭn, M. G., Spectral theory of operators in spaces with indefinite metric. I, II, Amer. Math. Soc. Transi. (2) 13 (1960), 105-175; ibid. (2) 34 (1963), 283373.Google Scholar
14. Kalisch, G. K., Direct proofs of spectral representation theorems, J. Math. Anal. Appl. 8 (1964), 351363.Google Scholar
15. Kalisch, G. K., Characterizations of direct sums and commuting sets of Volterra operators, Pacific J. Math. 18 (1966), 545552.Google Scholar
16. Kreĭn, M. G., Introduction to the geometry of indefinite J-spaces and to the theory of operators in those spaces, Second Mathematical Summer School, Part I, pp. 1592 (Naukova Dumka, Kiev, 1965). (Russian)Google Scholar
17. Kreĭn, M. G. and Langer, G. K., On the spectral function of a self-adjoint operator in a space with indefinite metric, Dokl. Akad. Nauk SSSR 152 (1963), 3942. (Russian)Google Scholar
18. Livsic, M. S., On spectral decomposition of linear non-s elf adjoint operators, Mat. Sb. (N. S.) 34 (76) (1954), 145199. (Russian)Google Scholar
19. Mal'cev, A. I., Foundations of linear algebra, Translated from the Russian by Brown, Thomas Craig; edited by Robarts, J. B. (Freeman, San Francisco, Calif .-London, 1963).Google Scholar
20. Naĭmark, M. A., Unitary permutation operators in the space Ilk, Dokl. Akad. Nauk SSSR 149 (1963), 12611263. (Russian)Google Scholar
21. Naĭmark, M. A. and Fomin, S. V., Continuous direct sums of Hilbert spaces and some of their applications, Amer. Math. Soc. Transi. (2) 5 (1957), 3565.Google Scholar
22. Nevanlinna, R., Eindeutige analytische Funktionen, 2te Aufl., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Beriicksichtigung der Anwendungsgebiete, Bd. 66 (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1953).Google Scholar
23. Nevanlinna, R., Uber metrische lineare Railme. I, II, III, IV, V, Ann. Acad. Sci. Fenn. Ser. AI Math.-Phys. no. 108 (1952), no. 113 (1952), no. 115 (1952), no. 163 (1954), no. 222 (1956).Google Scholar
24. Phillips, R. S., The extension of dual subspaces invariant under an algebra, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, pp. 366398 (Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961).Google Scholar
25. Pontrjagin, L. S., Hermitian operators in spaces with indefinite metric, Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 8 (1944), 243280. (Russian)Google Scholar
26. Porcelli, P., Linear spaces of analytic functions (Rand McNally, Chicago, 1966).Google Scholar
27. Riesz, F. and -Nagy, B. Sz., Functional analysis (Ungar, New York, 1965).Google Scholar
28. Rudin, W., Real and complex analysis (McGraw-Hill, New York, 1966).Google Scholar
29. Schaefer, H. H., Topological vector spaces (Macmillan, New York; Collier-Macmillan, London, 1966).Google Scholar
30. -Nagy, B. Sz., On uniformly bounded transformations in Hilbert space, Acta Univ. Szeged Sect. Sci. Math. 11 (1947), 152157.Google Scholar
31. Taylor, A. E., Introduction to functional analysis (Wiley, New York, 1967).Google Scholar