Published online by Cambridge University Press: 20 November 2018
If VK is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the sublattice of) all subspaces of VK which are invariant under every transformation in R. Then R ⊆ alg [lat R] and R is called a reflexive algebra when this is equality. Every finite dimensional algebra is isomorphic to a reflexive one ([4]) and these reflexive algebras have been studied by Azoff [1], Barker and Conklin [3] and Habibi and Gustafson [9] among others.