Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:22:47.857Z Has data issue: false hasContentIssue false

Reflexive Bimodules

Published online by Cambridge University Press:  20 November 2018

K. R. Fuller
Affiliation:
University of Iowa, Iowa City, Iowa
W. K. Nicholson
Affiliation:
University of Calgary, Calgary, Alberta
J. F. Watters
Affiliation:
University of Leicester, Leicester, England
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If VK is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the sublattice of) all subspaces of VK which are invariant under every transformation in R. Then R ⊆ alg [lat R] and R is called a reflexive algebra when this is equality. Every finite dimensional algebra is isomorphic to a reflexive one ([4]) and these reflexive algebras have been studied by Azoff [1], Barker and Conklin [3] and Habibi and Gustafson [9] among others.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Azoff, E., K-reflexivity in finite dimensional spaces, Duke Math. J. 40 (1973), 821830.Google Scholar
2. Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Springer-Verlag, New York, 1973).Google Scholar
3. Barker, G. P. and Conklin, J. J., Reflexive algebras of matrices, Rocky Mountain J. of Math 75 (1985), 107116.Google Scholar
4. Brenner, S.and Butler, M. C. R., Endomorphism rings of vector spaces and torsion free abelian groups, J. London Math. Soc. 40 (1965), 183187.Google Scholar
5. Deddens, J. A. and Fillmore, P., Reflexive linear transformations, Lin. Alg. Appl. 10 (1975), 8993.Google Scholar
6. Faith, C., Algebra II ring theory (Springer-Verlag, Berlin Heidelberg New York, 1976).Google Scholar
7. Fuller, K. R., The structure of QF-3 rings, Trans. Amer. Math Soc. 134 (1968), 343354.Google Scholar
8. Habibi, J. F., Reflexive modules over algebras, Dissertation, Texas Tech. University (1986).Google Scholar
9. Habibi, J. F. and Gustafson, W. H., Reflexive serial algebras, Lin. Alg. Appl. 99 (1988), 217223.Google Scholar
10. Hadwin, D.and Kerr, J. W., Scalar-reflexive rings, Proc. Amer. Math. Soc. 103 (1988), 18.Google Scholar
11. Halmos, P. R., Reflexive lattices of subspaces, J. London Math. Soc. 4 (1971), 257263.Google Scholar
12. Mitchell, B., Theory of categories (Academic Press, New York, 1965).Google Scholar
13. Murase, I., On the structure of generalized uniserial rings I, Sci. Papers Coll. Gen. Ed., Univ. Tokyo 13 (1963), 122.Google Scholar
14. Rota, G. C., On the foundations of combinatorial theory (I. Theory of Möbius functions), Z. Wahrschienlichkietstheorie und Verw. Gebiete 2 (1964), 340368.Google Scholar
15. Rotman, J. J., An introduction to homological algebra (New York-San Francisco-London; Academic Press, 1969).Google Scholar
16. Thrall, R. M., Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173183.Google Scholar