Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-04T09:40:35.942Z Has data issue: false hasContentIssue false

Quotient Spaces Without Bases in Nuclear Frechet Spaces

Published online by Cambridge University Press:  20 November 2018

Ed Dubinsky
Affiliation:
Clarkson College of Technology, Potsdam, New York
Boris Mitiagin
Affiliation:
Clarkson College of Technology, Potsdam, New York
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first example of a nuclear Fréchet space without a basis was given by B. S. Mitiagin and N. M. Zobin [9; 10]. The question of existence of subspaces without bases in nuclear Fréchet spaces was recently settled in papers by P. Djakov and B. S. Mitiagin [2] and Ed Dubinsky [5]. In this paper we consider the analogous question for quotient spaces. As in the case of subspaces we obtain a complete solution to the problem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1978

References

1. Bessaga, Cz. and Pefczyriski, A., Wfasnosci baa w przestrzcniach typu B, Prace MatematyczneS (1959), 123142.Google Scholar
2. Plamen, Djakov and Boris, Mitiagin, Modified construction of nuclear Fréchet spaces without basis, J. Functional Anal. 23 (1976), 415433.Google Scholar
3. Dubinsky, Ed, Perfect Fréchet spaces, Math. Ann. 174 (1967), 186194.Google Scholar
4, Dubinsky, Ed Concrete subs paces of nuclear Fréchet spaces, Studia Math. 52 (1975), 209219.Google Scholar
5. Dubinsky, Ed Subspaces without bases in nuclear Fréchet spaces, J. Functional Anal. 26 (1977), 121130.Google Scholar
6. Dubinsky, Ed and Robinson, W. B., Quotient spaces of (s) with basis, Studia Math.Google Scholar
7. Johnson, W. B. and Rosenthal, H. P., On ta*-basic sequences and their applications to the study of Banach spaces, Studia Math. 4-1 (1972), 7792.Google Scholar
8. Kothe, G., Topological vector spaces I (Springer-Verlag, New York, 1969).Google Scholar
9. Mitiagin, B. S. and X, Zobin, M., Contre-exemple à l'existence d'une base dans un espace de Fréchet nucléaire, C. R. Acad. Sci. Paris, ser. A 279 (1974).Google Scholar
10. Zobin, N. M. and Mitiagin, B. S., Examples of nuclear Fréchet spaces without basis, Funkcional. Anal, i Prilozen. 8 (1974), 3547.Google Scholar