Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T22:42:15.464Z Has data issue: false hasContentIssue false

Proof of a Conjecture of Schoenberg on the Generating Function of a Totally Positive Sequence

Published online by Cambridge University Press:  20 November 2018

Albert Edrei*
Affiliation:
Syracuse University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let

be a sequence of real terms with which we associate the generating power series

We consider the following definition due to Schoenberg [7, p. 362]:

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Aissen, M., Schoenberg, I. J., and Whitney, A., On the generating functions of totally positive sequences I, Journal d'Analyse Mathématique, not yet published. Google Scholar
2. Dienes, P., The Taylor series (Oxford, 1931).Google Scholar
3. Edrei, A., On the generating functions of totally positive sequences II, Journal d'Analyse Mathématique, not yet published. Google Scholar
4. Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes (Paris, 1929).Google Scholar
5. Perron, O., Die Lehre von den Kettenbrüchen, 2nd ed. (Leipzig, 1929).Google Scholar
6. Schoenberg, I. J., Zur Abzählung der reellen Wurzeln algebraischer Gleichungent, Math. Z., 38 (1934), 546564.Google Scholar
7. Schoenberg, I. J. Some analytical aspects of the problem of smoothing, Courant Anniversary Volume (New York, 1948), 351369.Google Scholar
8. Whitney, A., A reduction theorem for totally positive matrices, Journal d'Analyse Mathématique, not yet published.Google Scholar