Article contents
A Product Formula and a Non-Negative Poisson Kernel for Racah-Wilson Polynomials
Published online by Cambridge University Press: 20 November 2018
Extract
Physicists have long been using Racah's [7] 6-j symbols as a representation for the addition coefficients of three angular momenta. Racah himself discovered a series representation of the 6-j symbol which can be expressed as a balanced 4F3 series of argument 1, that is, a generalized hypergeometric function such that the sum of the 3 denominator parameters exceeds that of the 4 numerator parameters by 1. What Racah does not seem to have realized or, perhaps, cared to investigate, is that his 4F3 functions, with variables and parameters suitably identified, form a system of orthogonal polynomials in a discrete variable. The orthogonality of 6-j symbols as an orthogonality of 4F3 polynomials was recognized much later by Biedenharn et al. [3] in some special cases. Recently J. Wilson [13, 14] introduced a very general system of orthogonal polynomials expressible as balanced 4F3 functions of argument 1 orthogonal with respect to an absolutely continuous measure and/or a discrete weight function. Wilson's polynomials contain Racah's 6-j symbols as a special case. These polynomials might rightfully be credited to Wilson alone, but justice might be better served if we call them Racah-Wilson polynomials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1980
References
- 3
- Cited by