Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T21:57:55.840Z Has data issue: false hasContentIssue false

Overconvergent Families of Siegel–Hilbert Modular Forms

Published online by Cambridge University Press:  20 November 2018

Chung Pang Mok
Affiliation:
Morningside Center of Mathematics, Beijing 100190, China e-mail: [email protected]
Fucheng Tan
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct one-parameter families of overconvergent Siegel–Hilbert modular forms. This result has applications to the construction of Galois representations for automorphic forms of non-cohomological weights.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[AIP] Andreatta, F., Iovita, A., and Pilloni, V., p-Adic families of Siegel modular cuspforms. Ann. of Math., to appear.Google Scholar
[AIP2] Andreatta, F., Iovita, A., and Pilloni, V., On overconvergent Hilbert modular cusp forms. http://perso.ens-lyon.fr/vincent.pilloni/AIP2.pdf Google Scholar
[Bi] Bijakowski, S., Classicité de formes modulaires surconvergentes. http://arxiv.org/abs/1212.2035 Google Scholar
[BC] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups. Astérisque324(2009).Google Scholar
[Co] Coleman, R., p-adic Banach spaces and families of modular forms. Invent. Math. 127(1997), 417–479.http://dx.doi.org/10.1007/s002220050127 Google Scholar
[CM] Coleman, R. and Mazur, B., The eigencurve. In: Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge University Press, Cambridge, 1998, 1–113.Google Scholar
[DP] Deligne, P. and Pappas, G., Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant. Compositio Math. 90(1994), 59–79.Google Scholar
[FC] Faltings, G. and Chai, C-L., Degeneration of abelian varieties. With an appendix by David Mumford. Ergeb. Math. Grenzgeb. (3) 22, Springer-Verlag, Berlin, 1990.Google Scholar
[Fa] Fargues, L., La filtration canonique des points de torsion des groupes p-divisibles. With the collaboration of Yichao Tian. Ann. Sci. École Norm. Sup. 44(2011), 905–961.Google Scholar
[Hi02] Hida, H., Control theorems of coherent sheaves on Shimura varieties of PEL type. J. Inst. Math. Jussieu 1(2002), 1–76.Google Scholar
[Hi86] Hida, H., Galois representations into attached to ordinary cusp forms. Invent. Math. 85(1986), 543–613. http://dx.doi.org/10.1007/BF01390329 Google Scholar
[Ka] Katz, N., p-adic L-functions for CM fields. Invent. Math. 49(1978), 199–297.http://dx.doi.org/10.1007/BF01390187 Google Scholar
[KL] Kisin, M. and Lai, K.-F., Overconvergent Hilbert modular forms. Amer. J. Math. 127(2005), 735–783.http://dx.doi.org/10.1353/ajm.2005.0027 Google Scholar
[Ko] Kottwitz, R., Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5(1992),373–444.http://dx.doi.org/10.1090/S0894-0347-1992-1124982-1 Google Scholar
[La12] Lan, K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci. http://www.math.umn.edu/~kwlan/articles/cpt-ram-ord.pdf Google Scholar
[La08] Lan, K.-W., Arithmetic compactifications of PEL-type Shimura varieties. Harvard thesis, 2008.Google Scholar
[Lü] Lütkebohmert, W., Formal-algebraic and rigid analytic geometry. Math. Ann. 286(1990), 341–371.http://dx.doi.org/10.1007/BF01453580 Google Scholar
[Mo] Mok, C.-P., Galois representations associated to automorphic forms on GL2 over CM fields and local global compatibility up to semi-simplification. Compos. Math., to appear.Google Scholar
[GIT] Mumford, D., Geometric invariant theory. Ergeb. Math. Grenzgeb. (3) Springer-Verlag, Berlin-New York, 1965.Google Scholar
[PR] Pappas, G. and Rapoport, M., Local models in the ramified case. II. Splitting models. Duke Math. J. 127(2005), 193–250. http://dx.doi.org/10.1215/S0012-7094-04-12721-6 Google Scholar
[Ra] Rapoport, M., Compactifications de l’espace de modules de Hilbert–Blumenthal. Compositio Math. 36(1978), 255–335.Google Scholar