Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T07:18:22.136Z Has data issue: false hasContentIssue false

The Osculatory Packing of a Three Dimensional Sphere

Published online by Cambridge University Press:  20 November 2018

David W. Boyd*
Affiliation:
University of British Columbia, Vancouver, British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Packings by unequal spheres in three dimensional space have interested many authors. This is to some extent due to the practical applications of such investigations to engineering and physical problems (see, for example, [16; 17; 31]). There are a few general results known concerning complete packings by spheres in N-dimensional Euclidean space, due mainly to Larman [20; 21]. For osculatory packings, although there is a great deal of specific knowledge about the two-dimensional situation, the results for higher dimensions, such as [4], rely on general methods which do not give particularly precise information.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1973

References

1. Boerdijk, A. H., Some remarks concerning close-packing of equal spheres, Philips Res. Rep. 7 (1952), 303313.Google Scholar
2. Boyd, D. W., Osculatorypackings by spheres, Can. Math. Bull. 13 (1970), 5964.Google Scholar
3. Boyd, D. W., Lower bounds for the disk-packing constant, Math. Comp. 24 (1970), 697704.Google Scholar
4. Boyd, D. W., On the exponent of an osculatory packing, Can. J. Math. 23 (1971), 355363.Google Scholar
5. Boyd, D. W., The disk-packing constant, Aequationes Math. 7 (1971), 182193.Google Scholar
6. Boyd, D. W., Improved bounds for the disk-packing constant, Aequationes Math, (to appear).Google Scholar
7. Boyd, D. W., An algorithm for generating the sphere coordinates in a three dimensional osculatory packing(to appear in Math. Comp.).Google Scholar
8. Clifford, W. H., On the powers of spheres (1868), in Mathematical papers (Macmillan, London, 1882).Google Scholar
9. Coolidge, J. L., A treatise on the circle and the sphere (Oxford, Clarendon Press, 1916).Google Scholar
10. Coxeter, H. S. M., Loxodromic sequences of tangent spheres, Aequationes Math. 1 (1968), 104121.Google Scholar
11. Darboux, G., Sur les relations entre les groupes de points, de cercleset de spheres dans le plan etdansVespace, Ann. École Norm. Sup. 1 (1872), 323392.Google Scholar
12. FejesTóth, L., Regular figures (Pergammon Press, London, 1964).Google Scholar
13. Foster, D. M. E., On the exponent of the Apollonian packing of circles, J. London Math. Soc. 3 (1971), 281287.Google Scholar
14. Frobenius, G., Anwendungen der Determinantentheorie auf die Geometrie des Masses, Crelle's Journal 79 (1875), 185247.Google Scholar
15. Gilbert, E. N.,Randomly packed and solidly packed spheres, Can. J. Math. 16 (1964), 286298.Google Scholar
16. Horsfield, H. T., The strength of asphalt mixtures, J. Soc. Chem. Ind. (Transactions) 53 (1934), 107T-115T.Google Scholar
17. Hudson, D. R., Density and packing in an aggregate of mixed spheres, J. Appl. Phys. 20 (1949), 155162.Google Scholar
18. Lachlan, R., On systems of circles and spheres, Philos. Trans. Roy. Soc. London Ser. A 177 (1886), 481625.Google Scholar
19. Larman, D. G., A note on the Besicovitch dimension of the closest packing of spheres in Rn, Proc. Camb. Philos. Soc. 62 (1966), 193195.Google Scholar
20. Larman, D. G., On the exponent of convergence of a packing of spheres, Matematika13 (1966), 57-59. 21 .On packings of unequal spheres in Rn, Can. J. Math. 20 (1968), 967969.Google Scholar
22. Mauldon, J. G.,Sets of equally inclined spheres, Can. J. Math. 14 (1962), 509516.Google Scholar
23. Melzak, Z. A., Infinite packings of disks, Can. J. Math. 18 (1966), 838852.Google Scholar
24. Melzak, Z. A., On the solid-packing constant for circles, Math. Comp. 23 (1969), 169172.Google Scholar
25. Pedoe, D., On a theorem in geometry, Amer. Math. Monthly 74 (1967), 627640.Google Scholar
26. Soddy, F., The kiss precise, Nature 137 (1936), 1021.Google Scholar
27. Soddy, F., The Hexlet, Nature 138 (1936), 958.Google Scholar
28. Soddy, F., The bowl of integers and the Hexlet, Nature 139 (1937), 7779.Google Scholar
29. Wilker, J. B., Open disk packings of a disk, Can. Math. Bull. 10 (1967), 395415.Google Scholar
30. Wilker, J. B., Circular sequences of disks and balls, Notices Amer. Math. Soc. 19 (1972), A. 193.Google Scholar
31. Wise, M. E., Dense Random packing of unequal spheres, Philips Res. Rep. 7 (1952), 321343.Google Scholar
32. Woods, F. S., Higher geometry (Ginn and Co. 1922, republished by Dover, New York, 1961).Google Scholar