Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T22:34:32.914Z Has data issue: false hasContentIssue false

Orthogonal Isomorphic Representations Of Free Groups

Published online by Cambridge University Press:  20 November 2018

J. De Groot*
Affiliation:
University of Amsterdam
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relations

P2 = Q3 = I.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Bieberbach, L., Analytische Geometrie (Teubner, 1932).Google Scholar
2. Doniakhi, Kh. A., Linear representation of the free product of cyclic groups, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser., 10 (1940), 158165 (Russian).Google Scholar
3. Fuchs-Rabinowitsch, D. J., Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser., 10 (1940), 154–157 (Russian).Google Scholar
4. de Groot, J. and Dekker, T., Free subgroups of the orthogonal group, Comp. Math., 12 (1954), 134136.Google Scholar
5. Hausdorff, F., GrundzÜge der Mengenlehre (1914), 469–472.Google Scholar
6. von Neumann, J., Ein System algebraisch unabhängiger Zahlen, Math. Ann., 99 (1928), 134141.Google Scholar
7. Robinson, R. M., On the decomposition of spheres, Fund. Math., 84 (1947), 246260.Google Scholar
8. Sanov, I. N., A property of a representation of a free group, Doklady Akad. Nauk. SSSR (N.S.), 57 (1947), 657659 (Russian).Google Scholar
9. Sierpiiński, W., Sur le paradoxe de la sphère, Fund. Math., 88 (1945), 235244.Google Scholar