No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let ${{E}_{/\mathbb{Q}}}$ be an elliptic curve with good ordinary reduction at a prime $p\,>\,2$. It has a welldefined Iwasawa $\mu $-invariant $\mu {{\left( E \right)}_{p}}$ which encodes part of the information about the growth of the Selmer group $\text{Se}{{\text{l}}_{{{p}^{\infty }}}}\left( {{E}_{/{{K}_{n}}}} \right)$ as ${{K}_{n}}$ ranges over the subfields of the cyclotomic ${{\mathbb{Z}}_{p}}$-extension ${{K}_{\infty }}/\mathbb{Q}$. Ralph Greenberg has conjectured that any such $E$ is isogenous to a curve ${E}'$ with $\mu {{\left( {{E}'} \right)}_{p}}\,=\,0$. In this paper we prove Greenberg's conjecture for infinitely many curves $E$ with a rational $p$-torsion point, $p$ = 3 or 5, no two of our examples having isomorphic $p$-torsion. The core of our strategy is a partial explicit evaluation of the global duality pairing for finite flat group schemes over rings of integers.