Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T19:43:47.128Z Has data issue: false hasContentIssue false

On The Number of Classes of a Finite Group Invariant for Certain Substitutions

Published online by Cambridge University Press:  20 November 2018

A. J. van Zanten
Affiliation:
Duke University, Durham, North Carolina
E. de Vries
Affiliation:
Duke University, Durham, North Carolina
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider representations of groups over the field of the complex numbers.

The nth-Kronecker power σ⊗n of an irreducible representation σ of a group can be decomposed into the constituents of definite symmetry with respect to the symmetric group Sn. In the special case of the general linear group GL(N) in N dimensions the decomposition of the defining representation at once provides irreducible representations of GL(N) [9; 10; 11].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Butler, P. H., Wigner coefficients and n — j symbols for chains of groups (to appear).Google Scholar
2. Butler, P. H. and King, R. C., Symmetrized Kronecker products of group representations, Can. J. Math. 26 (1974), 328339.Google Scholar
3. Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, 2nd ed. (Springer Verlag, Berlin-Göttingen-Heidelberg-New York, 1965).Google Scholar
4. Derome, J.-R., Symmetry properties of the 3j-symbols for an arbitrary group, J. Mathematical Phys. 7 (1966), 612615.Google Scholar
5. Feit, W., Characters of finite groups (W. A. Benjamin, New York-Amsterdam, 1967).Google Scholar
6. Frobenius, G. and Schur, I., Über die reellen Darstellungen der tndlichen Gruppen, Sitzungsberichte der kön. preuss. Ak. der Wissenschaften, Jahrgang 1906, S. 186 (Berlin).Google Scholar
7. King, R. C., Branching rules for GL(N) ⊃ Σm and the evaluation of inner plethysms (to appear in J. Mathematical Phys.).Google Scholar
8. Leech, J. (éd.), Computational problems in abstract algebra (Pergamon Press, Oxford, 1970).Google Scholar
9. Littlewood, D. E., The theory of group characters and matrix representations of groups, 2nd ed. (Clarendon Press, Oxford, 1950).Google Scholar
10. Murnaghan, F. D., The theory of group representations (Dover Publ., New York, 1963).Google Scholar
11. Robinson, G. de B., Representation theory of the symmetric group (University of Toronto Press, Toronto, 1961).Google Scholar
12. van Zanten, A. J., Some applications of the representation theory of finite groups: a partial reduction method, Ph.D. thesis, Groningen, 1972.Google Scholar
13. van Zanten, A. J. and de Vries, E., On the number of roots of the equation Xn = 1 infinite groups and related properties, J. Algebra (1973), 475-486Google Scholar