Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:24:06.573Z Has data issue: false hasContentIssue false

On Sums of Sets of Integers

Published online by Cambridge University Press:  20 November 2018

J. H. B. Kemperman
Affiliation:
Purdue University
Peter Scherk
Affiliation:
University of Saskatchewan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Small italics denote integers. Let A, B, … be sets of non-negative integers. Let A (h) be the number of positive integers in A that are not greater than h. Finally let A + B denote the set of all integers of the form a + b where a ⊂ A, b ⊂ B. The following result is implicitly contained in Mann's Proposition 11 (4):

Theorem 1. Let n > 0 and

(1.1) 0⊂4, 0⊂B, n⊄C = A + B.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. van der Corput, J. G. and Kemperman, J. H. B., The second pearl of the theory of numbers I. Nederl. Akad. Wetensch., Proc, 52 (1949), 696-704; or Indagationes Math. 11 (1949), 226234.Google Scholar
2. Hadwiger, H., Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Math. Z. 58 (1950), 210218.Google Scholar
3. Khintchine, A., Zur additiven Zahlentheorie. Mat. Sbornik 39 (1932), 2734.Google Scholar
4. Mann, H. B., A proof of the fundamental theorem on the density of sums of sets of positive integers. Ann. Math. (2), 43 (1942), 523527.Google Scholar