Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-02T23:44:46.190Z Has data issue: false hasContentIssue false

On Order Properties of Order Bounded Transformations

Published online by Cambridge University Press:  20 November 2018

Charalambos D. Aliprantis*
Affiliation:
STD Research Corporation, A rcadia, California; Indiana University—Purdue University at Indianapolis, Indianapolis, Indiana
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

W. A. J. Luxemburg and A. C. Zaanen in [7] and W. A. J. Luxemburg in [5] have studied the order properties of the order bounded linear functionals of a given Riesz space L. In this paper we consider the vector space (L, M) of the order bounded linear transformations from a given Riesz space L into a Dedekind complete Riesz space M.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

1. Day, M. M., The spaces L with 0 < p < 1, Bull. Amer. Math. Soc. 46 (1940), 816823.Google Scholar
2. Fremlin, D. H., Topological Riesz spaces and measure theory (Cambridge University Press, London, 1974).Google Scholar
3. Jameson, G., Ordered linear spaces (Springer-Verlag, Berlin, New York, 1970).Google Scholar
4. Kantorovich, L. V., Concerning the general theory of operations in particular ordered spaces, Dan SSSR, (1936), 271274 (Russian).Google Scholar
5. Luxemburg, W. A. J., Notes on Banach function spaces, Proc. Acad. Sc. Amsterdam, Note XV, A68, (1965), 415446.Google Scholar
6. Luxemburg, W. A.J.and Zaanen, A. C., The linear modulus of an integral transformation, Proc. Acad. Sc. Amsterdam, A75 (1971), 442447.Google Scholar
7. Luxemburg, W. A.J.and Zaanen, A. C., Notes on Banach function spaces, Proc. Acad. Sc. Amsterdam, Note VI, A66, (1963), 669-681, Note IX, A67 (1964), 507-518; Note X, A67 (1964), 493506.Google Scholar
8. Luxemburg, W. A.J.and Zaanen, A. C., Riesz spaces. I (North Holland, Amsterdam, 1971).Google Scholar
9. Nakano, H., Modulared semi-ordered linear spaces (Maruzen Co., Tokyo, 1950).Google Scholar
10. Ogasawara, T., Vector lattices, I and II, Tokyo, 1948 (In Japanese).Google Scholar
11. Peressini, A. L., Ordered topological vector spaces (Harper and Row, New York, 1967).Google Scholar
12. Riesz, F., Sur quelques notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. 41 (1940), 174206. (This work was first published in 1937 in Hungarian.)Google Scholar
13. Vulikh, B. Z., Introduction to the theory of partially ordered spaces, translation from the Russian (Wolters-Noordhoff, Groningen, 1967).Google Scholar