Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:24:33.274Z Has data issue: false hasContentIssue false

On Multilinear Fourier Multipliers of Limited Smoothness

Published online by Cambridge University Press:  20 November 2018

Loukas Grafakos
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA, e-mail: [email protected]
Akihiko Miyachi
Affiliation:
Department of Mathematics, Tokyo Woman's Christian University, Zempukuji, Suginami-ku, Tokyo 167- 8585, Japan, e-mail: [email protected]
Naohito Tomita
Affiliation:
Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove a certain ${{L}^{2}}$-estimate for multilinear Fourier multiplier operators with multipliers of limited smoothness. As a consequence, we extend the result of Calderón and Torchinsky in the linear theory to the multilinear case. The sharpness of our results and some related estimates in Hardy spaces are also discussed.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Bényi, Á. and Torres, R., Symbolic calculus and the transposes of bilinear pseudodifferential operators. Comm. Partial Differential Equations 28(2003), no. 5-6, 11611181. http://dx.doi.org/10.1081/PDE-120021190 Google Scholar
[2] Calderón, A.-P. and Torchinsky, A., Parabolic maximal functions associated with a distribution. II. Advances in Math. 24(1977), no. 2, 101171. http://dx.doi.org/10.1016/S0001-8708(77)80016-9 Google Scholar
[4] Coifman, R. R. and Meyer, Y., On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212(1975), 315331. http://dx.doi.org/10.1090/S0002-9947-1975-0380244-8 Google Scholar
[5] Coifman, R. R., Au delà des opérateurs pseudo-différentiels. Astérisque, 57, Société Mathématique de France, Paris, 1978.Google Scholar
[6] Coifman, R. R., Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(1978), no. 3, xi, 177202.Google Scholar
[7] Duoandikoetxea, J., Fourier analysis. Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001. Google Scholar
[8] Fefferman, C. and Stein, E. M., Hp spaces of several variables. Acta Math. 129(1972), no. 3-4, 137193. http://dx.doi.org/10.1007/BF02392215 Google Scholar
[9] Fujita, M. and Tomita, N., Weighted norm inequalities for multilinear Fourier multipliers. Trans. Amer. Math. Soc., to appear.Google Scholar
[10] Grafakos, L. and Kalton, N., Multilinear Calderón-Zygmund operators on Hardy spaces. Collect. Math. 52(2001), no. 2, 169179. Google Scholar
[11] Grafakos, L. and Si, Z., The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. 668(2012), 133147. http://dx.doi.org/10.1515/crelle.2011.137 Google Scholar
[12] Grafakos, L. and Torres, R., Multilinear Calderón-Zygmund theory. Adv. Math. 165(2002), no. 1, 124164. http://dx.doi.org/10.1006/aima.2001.2028 Google Scholar
[13] Hörmander, L., Estimates for translation invariant operators in Lp spaces. Acta Math. 104(1960), 93140. http://dx.doi.org/10.1007/BF02547187 Google Scholar
[14] Janson, S. and Jones, P.W., Interpolation between Hp spaces: the complex method. J. Funct. Anal. 48(1982), no. 1, 5880. http://dx.doi.org/10.1016/0022-1236(82)90061-1 Google Scholar
[15] Kato, T. and Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(1988), no. 7, 891907. http://dx.doi.org/10.1002/cpa.3160410704 Google Scholar
[16] Kenig, C. and Stein, E. M., Multilinear estimates and fractional integration. Math. Res. Lett. 6(1999), no. 1, 115. Google Scholar
[17] Lerner, A., Ombrosi, S.,Pérez, C., Torres, R. H., and Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220(2009), no. 4, 12221264. http://dx.doi.org/10.1016/j.aim.2008.10.014 Google Scholar
[18] Miyachi, A. and Tomita, N., Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam., to appear.Google Scholar
[19] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.Google Scholar
[20] Stein, E. M. and Weiss, G., On the interpolation of analytic families of operators acting on Hpspaces. Tôhoku Math. J. 9(1957), 318339. http://dx.doi.org/10.2748/tmj/1178244785 Google Scholar
[21] Tomita, N., A Hörmander type multiplier theorem for multilinear operators. J. Funct. Anal. 259(2010), no. 8, 20282044. http://dx.doi.org/10.1016/j.jfa.2010.06.010 Google Scholar