Published online by Cambridge University Press: 20 November 2018
In this paper we generalize to modules of singular submodule zero over a ring of singular ideal zero some of the results, which are well known for torsion-free modules over a commutative integral domain, e.g. [2, Chapter VII, p. 127], or over a ring, which possesses a classical right quotient ring, e.g. [13, § 5].
Let R be an associative ring with 1 and let M be a unitary right R-module, the latter fact denoted by MR. A submodule NR of MR is large in MR (MR is an essential extension of NR) if NR intersects non-trivially every non-zero submodule of MR; the notation NR ⊆′ MR is used for the statement “NR is large in MR” The singular submodule of MR, denoted Z(MR), is then defined to be the set {m ∈ M| r(m) ⊆’ RR}, where