Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T19:25:19.186Z Has data issue: false hasContentIssue false

On Euclid's Algorithm in Cyclic Fields

Published online by Cambridge University Press:  20 November 2018

H. Heilbronn*
Affiliation:
The Royal Fort, Bristol8
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In two papers I have proved that there are only a finite number of quadratic fields [6] and of cyclic cubic fields [7] in which Euclid's algorithm (E.A.) holds. Davenport has shown by a different method that there are only a finite number of quadratic fields [1, 2], of non-totally real cubic fields [3, 4] and of totally complex quartic fields in which E.A. holds.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

[1] Davenport, H., Indefinite binary quadratic forms, and Euclid's Algorithm in real quadratic fields, Proc. London Math. Soc, in course of publication.Google Scholar
[2] Davenport, H., Indefinite binary quadratic forms, Quart. J. Math., Oxford Ser. (2), vol. 1 (1950), 5462.Google Scholar
[3] Davenport, H., Euclid's Algorithm in cubic fields of negative discriminant, Acta Math., vol. 84 (1950), 159179.Google Scholar
[4] Davenport, H., Euclid's Algorithm in certain quartic fields, Trans. Amer. Math. Soc, vol. 68 (1950), 508532.Google Scholar
[5] Hasse, H., Bericht Über neuere Untersuchungen aus der Théorie der algebraischen Zahlkörper Jber. Deutsch. Math. Verein., vol. 35 (1926), 155.Google Scholar
[6] Heilbronn, H., On Euclid's Algorithm in real quadratic fields, Proc. Cambridge Phil. Soc, vol. 34 (1938), 521526.Google Scholar
[7] Heilbronn, H., On Euclid's Algorithm in self-conjugate cubic fields, Proc Cambridge Phil. Soc, vol. 46 (1950), 377382.Google Scholar
[8] Hilbert, D., Bericht ilber die Theorie der algebraischen Zahlkörper, Jber. Deutsch. Math. Verein., vol. 4 (1897), 175546.Google Scholar
[9] Ingham, A. E., The distribution of prime numbers (Cambridge, 1932).Google Scholar
[10] Polya, G., Über die Verteilung der quadratischen Reste und Nichtreste, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. 1918, 2129.Google Scholar