Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-02T22:39:56.820Z Has data issue: false hasContentIssue false

On Decomposability of Compact Perturbations of Normal Operators

Published online by Cambridge University Press:  20 November 2018

M. Radjabalipour
Affiliation:
Dalhousie University, Halifax, Nova Scotia
H. Radjavi
Affiliation:
Dalhousie University, Halifax, Nova Scotia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main purpose of this paper is to show that a bounded Hilbert-space operator whose imaginary part is in the Schatten class Cp(1 ≦ p < ∞ ) is strongly decomposable. This answers affirmatively a question raised by Colojoara and Foias [6, Section 5(e), p. 218].

In case 0 ≦ T* — T ∈ C1, it was shown by B. Sz.-Nagy and C. Foias [2, p. 442; 25, p. 337] that T has many properties analogous to those of a decomposable operator and by A. Jafarian [11] that T is strongly decomposable. The authors of [11] and [24] employ the properties of the characteristic function of the contraction operator obtained from the Cayley transform of T;

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

1. Apostol, C., Spectral decomposition and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 14811528.Google Scholar
2. Apostol, C., On the growth of resolvent, perturbation and invariant subspaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 161172.Google Scholar
3. Bacalu, I., On restrictions and quotients of decomposable operators, Rev. Roumaine Math. Pures Appl. 18 (1973), 809813.Google Scholar
4. Brown, L. G., Douglas, R. G., and Fillmore, P. A., Unitary equivalence modulo the compact operators and extensions of C*-algebras, Lecture notes in mathematics #345, (Springer-Verlag, 1973), 58128.Google Scholar
5. Calkin, J. W., Two sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. Jfi (1941), 839873.Google Scholar
6. Colojoara, I. and Foias, C., The theory of generalized spectral operators (Gordon Breach, Science Publ., New York, 1968).Google Scholar
7. Dunford, N. and Schwartz, J., Linear operators, I (Interscience, New York, 1958).Google Scholar
8. Dunford, N. and Schwartz, J., Linear operators, III (Interscience, New York, 1971).Google Scholar
9. Foias, C., Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basel) U (1963), 341349.Google Scholar
10. Halmos, P. R., A Hilbert space problem book (D. Van Nostrand Co., Princeton, 1967).Google Scholar
11. Jafarian, A. A., Weak contractions of Sz.-Nagy and Foias are decomposable, Rev. Roumaine Math. Pures Appl. (to appear).Google Scholar
12. Jafarian, A. A. and Vasilescu, F. H., A characterization of 2-decomposable operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 769771.Google Scholar
13. Kitano, K., Invariant subspaces of some non-self adjoint operators, Tôhoku Math. J. 20 (1968), 313322.Google Scholar
14. Macaev, V. I., A class of completely continuous operators, Soviet Math. Dokl. 2 (1961), 972975.Google Scholar
15. Nordgren, E., Radjavi, H., and Rosenthal, P., On operators with reducing invariant subspaces, Amer. J. Math, (to appear).Google Scholar
16. Putnam, C. R., An inequality for the area of hyponormal spectra, Math.Z. 116 (1970), 323330.Google Scholar
17. Radjabalipour, M., Growth conditions and decomposable operators, Can. J. Math. 26 (1974), 13721379.Google Scholar
18. Radjabalipour, M., On decomposition of operators, Michigan Math. J. 21 (1974), 265275.Google Scholar
19. Radjavi, H. and Rosenthal, P., Invariant subspaces (Springer Verlag, Berlin, 1973).Google Scholar
20. Schwartz, J., Subdiagonalization of operators in Hilbert space with compact imaginary part, Comm. Pure Appl. Math. 15 (1962), 159172.Google Scholar
21. Stampfli, J. G., A local spectral theory for operators, J. Functional Analysis 4 (1969), 110.Google Scholar
22. Stampfli, J. G., A local spectral theory for operators, III; Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133151.Google Scholar
23. Stampfli, J. G., A local spectral theory for operators, IV; Invariant subspaces, Indiana Univ. Math. J. 22 (1972), 159167.Google Scholar
24. Nagy, B. Sz. and Foias, C., Décomposition spectrale des contractions presque unitaires, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), 440442.Google Scholar
25. Nagy, B. Sz. and Foias, C., Harmonie analysis of operators on Hilbert space (North Holland, Amsterdam, 1970).Google Scholar