Article contents
On Decomposability of Compact Perturbations of Normal Operators
Published online by Cambridge University Press: 20 November 2018
Extract
The main purpose of this paper is to show that a bounded Hilbert-space operator whose imaginary part is in the Schatten class Cp(1 ≦ p < ∞ ) is strongly decomposable. This answers affirmatively a question raised by Colojoara and Foias [6, Section 5(e), p. 218].
In case 0 ≦ T* — T ∈ C1, it was shown by B. Sz.-Nagy and C. Foias [2, p. 442; 25, p. 337] that T has many properties analogous to those of a decomposable operator and by A. Jafarian [11] that T is strongly decomposable. The authors of [11] and [24] employ the properties of the characteristic function of the contraction operator obtained from the Cayley transform of T;
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1975
References
- 6
- Cited by