No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The present note is concerned with the existence and properties of certain types of extensions of Banach algebras which allow a faithful representation as the normed ring C(E) of all bounded continuous real functions on some topological space E. These Banach algebras can be characterized intrinsically in various ways (1); they will be called function rings here. A function ring E will be called a normal extension of a function ring G if E is directly indecomposable, contains C as a Banach subalgebra and possesses a group G of automorphisms for which C is the ring of invariants, that is, the set of all elements fixed under G. G will then be called a group of automorphisms of E over C. If E is a normal extension of C with precisely one group of automorphisms over C, which is then the invariance group of C in E, then E will be called a Galois extension of C. Such an extension will be called finite if its group is finite.