Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T06:28:36.859Z Has data issue: false hasContentIssue false

On Central Ω-Krull Rings and their Class Groups

Published online by Cambridge University Press:  20 November 2018

E. Jespers
Affiliation:
Katholieke Universiteit Leuven, Leuven, Belgium
P. Wauters
Affiliation:
Katholieke Universiteit Leuven, Leuven, Belgium
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this note is to study the class group of a central Ω-Krull ring and to determine in some cases whether a twisted (semi) group ring is a central Ω-Krull ring. In [8] we defined an Ω-Krull ring as a generalization of a commutative Krull domain. In the commutative theory, the class group plays an important role. In the second and third section, we generalize some results to the noncommutative case, in particular the relation between the class group of a central Ω-Krull ring and the class group of a localization. Some results are obtained in case the ring is graded. Theorem 3.2 establishes the relation between the class group and the graded class group. In particular, in the P.I. case we obtain that the class group is equal to the graded class group. As a consequence of a result on direct limits of Ω-Krull rings, we are able to derive a necessary and sufficient condition in order that a polynomial ring R[(Xi)iI] (I may be infinite) is a central Ω-Krull ring.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

0. Anderson, D. D. and Anderson, D. F., Divisibility properties of graded domains, Can. J. Math 24 (1982), 196215.Google Scholar
1. Anderson, D. F., Graded Krull domains, Comm. in Algebra 7 (1979), 79106.Google Scholar
2. Cauchon, G., Les T-anneaux et les anneaux à identifiés polynomials Noetheriens, Thèse, Univ. de Paris XI (1977).Google Scholar
3. Chamarie, M., Anneaux de Krull non commutatifs, Journal of Algebra 72 (1981), 210222.Google Scholar
4. Chamarie, M., Anneaux de Krull non commutatifs, Thèse, Université Claude-Bernard (Lyon) (1981).CrossRefGoogle Scholar
5. Demeyer, F. and Ingraham, E., Separable algebras over commutative rings, LNM 181 (Springer-Verlag, Berlin, 1971).CrossRefGoogle Scholar
6. Fossum, R., The divisor class group of a Krull domain, (Springer-Verlag, Berlin, 1973).CrossRefGoogle Scholar
7. Jespers, E., On geometrical Ω-Krull rings, Comm. in Algebra 11 (1983), 701792.Google Scholar
8. Jespers, E., le Bruyn, L. and Wauters, P., Ω-Krull rings I, to appear in Comm. in Algebra.CrossRefGoogle Scholar
9. Jespers, E., le Bruyn, L. and Wauters, P., A characterization of central Ω-Krull rings, J. of Algebra 81 (1983), 165179.Google Scholar
10. le Bruyn, L., Arithmetical rings I, preprint.Google Scholar
11. Marubayashi, H., Non commutative Krull rings, Osaka J. Math. 12 (1975), 703714.Google Scholar
12. Marubayashi, H., A characterization of hounded Krull prime rings, Osaka J. Math 75 (1978), 1320.Google Scholar
13. Marubayashi, H., Polynomial rings over Krull orders in simple Artinian rings, Hokkaido Math. J. 9 (1980), 6378.Google Scholar
14. Nǎstǎsescu, C. and van Oystaeyen, F., Graded and filtered rings and modules, LNM 758 (Springer-Verlag, Berlin, 1979).CrossRefGoogle Scholar
15. Passman, D. S., The algebraic structure of group rings (Wiley Interscience, 1977).Google Scholar
16. Rowen, O. H., Polynomial identities in ring theory (Academic Press, New York, 1980).Google Scholar
17. Samuel, P., Lectures on unique factorization domains, Fata Inst, of Fund. Research, Bombay (1964).Google Scholar
18. van Oystaeyen, F., Prime spectra in non-commutative algebra, LNM 444 (Springer-Verlag, Berlin, 1975).CrossRefGoogle Scholar
19. van Oystaeyen, F., On graded rings with polynomial identity, Bull Soc. Math. Belg. 32 (1980), 2228.Google Scholar
20. van Oystaeyen, F. and Verschoren, A., Non-commutative algebraic geometry, LNM 887 (Springer-Verlag, Berlin, 1981).Google Scholar
21. Wauters, P., On Ω-Krull rings in the graded sense, Bull. Soc. Math Bdg. 35 (1983), 126.Google Scholar