Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T07:51:49.800Z Has data issue: false hasContentIssue false

On Alexandroff Base Compactifications

Published online by Cambridge University Press:  20 November 2018

J. S. Wasileski*
Affiliation:
Iowa Wesleyan College, Mt. Pleasant, Iowa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [13] we characterized the completely regular Hausdorff spaces as the class of spaces whose topology is generated by an Alexandrofï base. A space may have more than one Alexandrofï base and each such base determines a Hausdorff compactification .

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Alo, R. A. and Shapiro, H. L., A note on compactifications and semi-normal spaces, Austral. Math. Soc. 8 (1968), 3743.Google Scholar
2. Engelking, R., Outline of general topology (North-Holland Publishing Company, Amsterdam, 1968).Google Scholar
3. Frink, O., Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602607.Google Scholar
4. Njastad, O., On Wallman type compactifications, Math. Z. 91 (1966), 267276.Google Scholar
5. Samuel, P., Ultrafilters and compactifications of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100132.Google Scholar
6. Smirnov, Yu., On proximity spaces, Transi. Amer. Math. Soc. 38 (1964), 536.Google Scholar
7. Steiner, E. F., Wallman spaces and compactifications, Fund. Math. 61 (1967), 295304.Google Scholar
8. Steiner, A. K. and Steiner, E. F., Products of compact spaces are regular Wallman, Indag. Math. 30 (1968), 428430.Google Scholar
9. Steiner, A. K. and Steiner, E. F. Precompact uniformities and Wallman compactifications, Indag. Math. 30 (1968), 117118.Google Scholar
10. Tamano, H., On compactifications, J. Math. Kyoto Univ. 1-2 (1962), 162193.10.1215/kjm/1250525055CrossRefGoogle Scholar
11. Wagner, F. J., Notes on compactifications, Indag. Math. 28 (1956), 171176.Google Scholar
12. Wasileski, J. S., Compactifications, Ph.D. Thesis, The Pennsylvania State University, 1970.Google Scholar
13. Wasileski, J. S. Compactifications, Can. J. Math. 26 (1974), 365371.Google Scholar