Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T02:30:53.640Z Has data issue: false hasContentIssue false

N-Series and Filtrations of the Augmentation Ideal

Published online by Cambridge University Press:  20 November 2018

Gerald Losey*
Affiliation:
University of Manitoba, Winnipeg, Manitoba
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a group. Denote by ZG the group ring of G over the integers and by Δ = Δ(G) the augmentation ideal of ZG, that is, the kernel of the augmentation map ϵ : ZGZ defined by . Then Δ is a free abelian group with a free basis . A filtration of Δ is a sequence

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Gruenberg, K. W., Cohomological topics in group theory, Lecture Notes in Mathematics 145 (Springer-Verlag, Berlin, 1970).Google Scholar
2. Gruenberg, K. W., Residual properties of infinite solvable groups, Proc. London Math. Soc. 7 (1957), 2962.Google Scholar
3. Hoare, A. H. M., Group rings and lower central series, J. London Math. Soc. 1 (1969), 3740.Google Scholar
4. Lazard, M., Sur les groupes nilpotentes et les anneaux de Lie, Ann. École Norm. Sup. 71 (1954), 101190.Google Scholar
5. Losey, G., On dimension subgroups, Trans. Amer. Math. Soc. 97 (1960), 474486.Google Scholar
6. Losey, G., On the structure of Q2(G) for finitely generated groups, Can. J. Math. (1973), 353-359.Google Scholar
7. Moran, S., Dimension subgroups modulo n, Proc. Cambridge Philos. Soc. 68 (1970), 579582.Google Scholar
8. Passi, I. B. S., Dimension subgroups, J. Algebra 9 (1968), 152182.Google Scholar
9. Rips, E., On the fourth integer dimension subgroup, Israel J. Math. 12 (1972), 342346.Google Scholar
10. Sandling, R., Dimension subgroups over arbitrary coefficient rings, J. Algebra 21 (1972), 250265.Google Scholar