Article contents
Nilpotent Partition-Inducing Automorphism Groups
Published online by Cambridge University Press: 20 November 2018
Extract
If A is a group acting on a set X and x ∈ X, we denote the stabilizer of x in A by CA(x) and let Γ(x) be the set of elements of X fixed by CA(x). We shall say the action of A is partitive if the distinct subsets Γ(x), x ∈ X, partition X. A special example of this phenomenon is the case of a semiregular action (when CA (x) = 1 for every x ∈ X so the induced partition is a trivial one). Our concern here is with the case that A is a group of automorphisms of a finite group G and X = G#, the set of non-identity elements of G. We shall prove that if A is nilpotent, then except in a very restricted situation, partitivity implies semiregularity.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
- 2
- Cited by