Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:18:49.789Z Has data issue: false hasContentIssue false

Monotone Hurwitz Numbers in Genus Zero

Published online by Cambridge University Press:  20 November 2018

I. P. Goulden
Affiliation:
Department of Combinatorics and Optimization, University of Waterloo, WaterlooON, e-mail: [email protected], [email protected]
Mathieu Guay-Paquet
Affiliation:
Department of Combinatorics and Optimization, University of Waterloo, WaterlooON, e-mail: [email protected], [email protected]
Jonathan Novak
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys–Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra–Itzykson–Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Bouchard, V. and Mariño, M., Hurwitz numbers, matrix models and enumerative geometry, In: From Hodge theory to integrability and TQFT tt*-geometry. Proc. Sympos. Pure Math., 78, American Mathematical Society, Providence, RI, 2008, pp. 263283.Google Scholar
[2] Bousquet-Mélou, M. and Schaeffer, G., Enumeration of planar constellations. Adv. in Appl. Math. 24(2000), no. 4, 337368. http://dx.doi.org/10.1006/aama.1999.0673 Google Scholar
[3] Ekedahl, T., Lando, S., Shapiro, M., and Vainshtein, A., Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146(2001), no. 2, 297327, http://dx.doi.org/10.1007/s002220100164 Google Scholar
[4] Eynard, B., Mulase, M., and Safnuk, B., The Laplace transform of the cut-and-join equation and the Bouchard-Marino conjecture on Hurwitz numbers.arxiv:0907.5224.Google Scholar
[5] Eynard, B. and Orantin, N., Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2007), no. 2, 347452.Google Scholar
[6] Féray, V., On complete functions in Jucys-Murphy elements. Ann. Comb., to appear. arxiv:1009.0144Google Scholar
[7] Gewurz, D. A. and Merola, F., Some factorisations counted by Catalan numbers. European J. Combin. 27(2006), no. 6, 990994. http://dx.doi.org/10.1016/j.ejc.2005.04.004 Google Scholar
[8] Goulden, I. P.,Guay-Paquet, M., and Novak, J., Polynomiality of monotone Hurwitz numbers in higher genera. arxiv:1210.3415Google Scholar
[9] Goulden, I. P., Monotone Hurwitz numbers and the HCIZ integral I.arxiv:1107.1015.Google Scholar
[10] Goulden, I. P. and Jackson, D. M., Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. Amer. Math. Soc. 125(1997), no. 1, 5160.http://dx.doi.org/10.1090/S0002-9939-97-03880-X Google Scholar
[11] Goulden, I. P., Jackson, D. M., and Vainshtein, A., The number of ramified coverings of the sphere by the torus and surfaces of higher genera. Ann. Comb. 4(2000), no. 1, 2746.http://dx.doi.org/10.1007/PL00001274 Google Scholar
[12] Goulden, I. P. and Jackson, David M., Combinatorial enumeration. Dover Publications Inc., Mineola, NY, 2004, Reprint of the 1983 original.Google Scholar
[13] Chandra, Harish, Differential operators on a semisimple Lie algebra. Amer. J. Math. 79(1957), 87120. http://dx.doi.org/10.2307/2372387 Google Scholar
[14] Hurwitz, A., Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Mathematische Annalen 39(1891), no. 1, 160.Google Scholar
[15] Itzykson, C. and Zuber, J. B., The planar approximation. II. J. Math. Phys. 21(1980), no. 3, 411421. http://dx.doi.org/10.1063/1.524438 Google Scholar
[16] Jucys, A.-A. A., Symmetric polynomials and the center of the symmetric group ring Rep. Mathematical Phys. 5(1974), no. 1, 107112. http://dx.doi.org/10.1016/0034-4877(74)90019-6 Google Scholar
[17] Kazarian, M. E. and Lando, S. K., An algebro-geometric proof of Witten's conjecture. J. Amer. Math. Soc. 20(2007), no. 4, 10791089. http://dx.doi.org/10.1090/S0894-0347-07-00566-8 Google Scholar
[18] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147(1992), no. 1, 123, http://dx.doi.org/10.1007/BF02099526 Google Scholar
[19] Lando, S. K. and Zvonkin, A. K., Graphs on surfaces and their applications. Encyclopaedia of Mathematical Sciences, 141, Low-Dimensional Topology, II, Springer-Verlag, Berlin, 2004.Google Scholar
[20] Lassalle, M., Class expansion of some symmetric functions in Jucys-Murphy elements. arxiv:1005.2346Google Scholar
[21] Macdonald, I. G., Symmetric functions and Hall polynomials. Second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.Google Scholar
[22] Okounkov, A. and Pandharipande, R., Gromov-Witten theory, Hurwitz numbers, and matrix models. In: Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., 80, American Mathematicla Society, Providence, RI, 2009, pp. 325414.Google Scholar
[23] Okounkov, A. and Vershik, A., A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2(1996), no. 4, 581605. http://dx.doi.org/10.1007/BF02433451 Google Scholar
[24] The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. 2008. http://combinat.sagemath.org. Google Scholar
[25] Steinet et al., W. A., Sage mathematics software (version 4.6), 2010, http://www.sagemath.org Google Scholar
[26] Strehl, V., Minimal transitive products of transpositions—the reconstruction of a proof of A. Hurwitz. Sém. Lothar. Combin. 37(1996), Art. S37c, 12 pp. (electronic).Google Scholar
[27] Witten, E., Two-dimensional gravity and intersection theory on moduli space. In: Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 243310.Google Scholar
[28] Zinn-Justin, P., HCIZ integral and 2D Toda lattice hierarchy. Nuclear Phys. B 634(2002), no. 3, 417432. http://dx.doi.org/10.1016/S0550-3213(02)00374-7 Google Scholar
[29] Zinn-Justin, P. and Zuber, J.-B., On some integrals over the U(N) unitary group and their large N limit. J. Phys. A 36(2003), no. 12, 31733193. http://dx.doi.org/10.1088/0305-4470/36/12/318 Google Scholar
[30] Zvonkin, A., Matrix integrals and map enumeration: an accessible introduction. Combinatorics and Physics (Marseilles, 1995). Math. Comput. Modelling 26(1997), no. 8–10, 281304. http://dx.doi.org/10.1016/S0895-7177(97)00210-0 Google Scholar