Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T04:27:25.162Z Has data issue: false hasContentIssue false

The Modular Group Algebra Problem for Small p-Groups Of Maximal Class

Published online by Cambridge University Press:  20 November 2018

Mohamed A. M. Salim
Affiliation:
Mathematics Department Emirates University P.O. Box 17551, Al-Ain United Arab Emirates
Robert Sandling
Affiliation:
Mathematics Department The University Manchester Ml3 9PL England email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that p-groups of maximal class and order p5 are determined by their group algebras over the field of p elements. The most important information requisite for the proof is obtained from a detailed study of the unit group of a quotient algebra of the group algebra, larger than the small group algebra.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Bagiriski, C. and Caranti, A., The modular group algebras ofp-groups of maximal class, Canad. J., Math. 40(1988), 14221435.Google Scholar
2. Bagiriski, C., Modular group algebras of 2-groups of maximal class, Comm., Algebra 20(1992), 1229. 1241.Google Scholar
3. Blackburn, N., On a special class ofp-groups, Acta, Math. 100(1958), 4592.Google Scholar
4. Cannon, J.J., An introduction to the group theory language, Cayley. In: Computational Group Theory, (ed. Atkinson, M.D.), Academic Press, London, 1984. 145183.Google Scholar
5. Du, X., The centers of a radical ring, Canad. Math., Bull. 35(1992), 174179.Google Scholar
6. Huppert, B., Endliche Gruppen I, Springer, Berlin, 1967.Google Scholar
7. Jacobson, N., Lie Algebras, Dover, New York, 1979.Google Scholar
8. James, R., The groups of order p6 (pan odd prime), Math., Comp. 34(1980), 613637.Google Scholar
9. Michler, G.O., Newman, M.F. and O'Brien, E.A., Modular group algebras, unpublished report, Australian National Univ., Canberra, 1987.Google Scholar
10. Roggenkamp, K.W. and Scott, L.L., Automorphisms and nonabelian cohomology: an algorithm, Linear Algebra, Appl. 192(1993), 355382.Google Scholar
11. Salim, M.A.M.and Sandling, R., The unit group of the modular small group algebra, Math. J. Okayama Univ., to appear.Google Scholar
12. Sandling, R., The isomorphism problem for group rings: a survey. In: Orders and Their Applications, Oberwolfach, 1984. (eds. Reiner, I. and Roggenkamp, K.W.), Lecture Notes in Math. 1142, Springer, Berlin, 1985. 256288.Google Scholar
13. Sandling, R., The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math., (Basel) 52(1989), 2227.Google Scholar
14. Sandling, R., The modular group algebra problem for metacy die p-groups, Proc. Amer. Math., Soc. 124(1996), 13471350.Google Scholar
15. Wursthorn, M., Die modularen Gruppenringe der Gruppen der Ordnung 26, Diplomarbeit, Universitat Stuttgart, 1990.Google Scholar
16. Wursthorn, M., Isomorphisms of modular group algebras: An algorithm and its application to groups of order 26, J. Symb., Comput. 15(1994), 211227.Google Scholar