Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T22:36:31.312Z Has data issue: false hasContentIssue false

Modified Boundary Value Problems For a Quasi-Linear Elliptic Equation

Published online by Cambridge University Press:  20 November 2018

G. F. D. Duff*
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. The quasi-linear elliptic partial differential equation to be studied here has the form

(1.1) Δu = − F(P,u).

Here Δ is the Laplacian while F(P,u) is a continuous function of a point P and the dependent variable u. We shall study the Dirichlet problem for (1.1) and will find that the usual formulation must be modified by the inclusion of a parameter in the data or the differential equation, together with a further numerical condition on the solution.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Banach, S., Théorie des opérations linéaires (Warsaw, 1932).Google Scholar
2. Bergman, S. and Schiffer, M., Kernel functions in the theory of partial differential equations of elliptic type, Duke Math. J., 15 (1948), 535566.Google Scholar
3. Bergman, S. and Schiffer, M., Existence theorems for some quasilinear partial differential equations, ONR report NRO 43068, (1952).Google Scholar
4. Courant, R. and Hilbert, D., Methoden der mathematischen Physik (Berlin, Vol. I, 1931; Vol. II, 1937).Google Scholar
5. Leray, J. and Schauder, J., Topologie et équations fonctionnelles, Ann. Ec. Norm. Sup., 51 (1934), 4678.Google Scholar
6. Lichtenstein, L., Vorlesungen ūber nichtlineare Integralgleichungen (Berlin, 1931).Google Scholar