Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T02:31:57.038Z Has data issue: false hasContentIssue false

Model-Completeness and Elementary Properties of Torsion Free Abelian Groups

Published online by Cambridge University Press:  20 November 2018

Elias Zakon*
Affiliation:
University of Windsor, Windsor, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The decidability of the elementary theory of abelian groups, and their complete classification by elementary properties (i.e. those formalizable in the lower predicate calculus (LPC) of formal logic), were established by W. Szmielew [13]. More general results were proved by Eklof and Fischer [2], and G. Sabbagh [12]. The rather formidable "high-power" techniques used in obtaining these remarkable results, and the length of the proofs (W. Szmielew's proof takes about 70 pages) triggered off several attempts at simplification. M. I. Kargapolov's proof [3] unfortunately turned out to be erroneous (cf. J. Mennicke's review in the Journal of Symbolic Logic, vol. 32, p. 535).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Birkhoff, G. and MacLane, S., A survey of modern algebra (Macmillan, New York, 1965).Google Scholar
2. Eklof, P. C. and Fischer, E. R., The elementary theory of abelian groups, Ann. Math. Logic 2 (1972), 115171.Google Scholar
3. Kargapolov, M. I., On the elementary theory of abelian groups, Algebra i Logika 6 (1963), 3741.Google Scholar
4. Kozlov, G. T. and Kokorin, A. I., An elementary theory of torsion-free groups, with a predicate that distinguishes a subgroup. Algebra i Logika 8 (1969), 320334.Google Scholar
5. Prüfer, H., Unlersuchungen ùber die Zerlegbarkeit der abzdhlbaren primdren abelschen Gruppen, Math. Z. 17(1923).Google Scholar
6. Prüfer, H., Théorie d. abelschen Gruppen, I, Math. Z. 20 (1924), 165–18.Google Scholar
7. Prüfer, H., Théorie d. abelschen Gruppen, II, Math. Z. 22 (1925), 222–24.Google Scholar
8. Robinson, A., Complete theories (North Holland, Amsterdam, 1956).Google Scholar
9. Robinson, A., Ordered structures and related concepts, Mathematical interpretation of formal systems, Studies in Logic and the Foundations of Math. (Amsterdam, 1954), 51-56.Google Scholar
10. Robinson, A. and Zakon, E., Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 96 (1960), 222236.Google Scholar
11. Sabbagh, G., Sur la purété dans les modules, C.R. Acad. Sci. Paris, Sér. A-B 271 (1970), A865A867.Google Scholar
12. Sabbagh, G., Aspècs logiques de la purété dans les modules, C.R. Acad. Sci. Paris, Sér. A-B 271 (1970), A909A912.Google Scholar
13. Szmielew, W., Elementary properties of abelian groups, Fund. Math. 41 (1955), 203271.Google Scholar
14. Zakon, E., Generalized archimedean groups, Trans. Amer. Math. Soc. 99 (1961), 2140.Google Scholar
15. Zakon, E., Elementary properties of torsion-free abelian groups (Abstract), Can. Math. Bull. 9 (1966), 399ff.Google Scholar