Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:10:18.365Z Has data issue: false hasContentIssue false

Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques

Published online by Cambridge University Press:  20 November 2018

Michel Waldschmidt*
Affiliation:
Université P. et M. Curie (Paris VI),C.N.R.S. “Problèmes Diophantiens“, Institut Henri Poincaré, II, rue P. et M. Curie, 75231 Paris Cedex 05
Rights & Permissions [Opens in a new window]

Resume

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On sait que la méthode classique de Schneider (en une variable) permet de minorer des combinaisons linéaires de deux logarithmes de nombres algébriques avec des coefficients algébriques. Nous généralisons cette méthode en plusieurs variables pour minorer des combinaisons linéaires de plusieurs logarithmes.

Abstract

Abstract

It's well known that Schneider's classical method (involving functions of a single complex variable) yields lower bounds for linear combinations of two logarithms of algebraic numbers with algebraic coefficients. We extend this method to functions of several variables and deduce an estimate for linear combinations of several logarithms.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

Références

[B] Baker, A., The theory of linear forms in logarithms, Chap.l de : Transcendence Theory, Advances and Applications, (ed. A. Baker and D.W.Masser), Academic Press (1977), 127.Google Scholar
[BGMMS] Blass, J., Glass, A.M., Manski, D.K., Meronk, D.B. and Steiner, R.P., Constants for lower bounds for linear forms in the logarithms of algebraic numbers, Acta Arith. 55(1990), 1-22, Problèmes Diophantiens 1987-1988, Publ. Univ. P. et M. Curie, Paris VI, (2) 88, 31p.Google Scholar
[G] Gel, A.O.'fond, Transcendental and algebraic numbers, Moscou, 1952, Dover, New York, 1960.Google Scholar
[LMPW] Loxton, J.H., Mignotte, M., van der Poorten, A.J. and Waldschmidt, M., A lower bound for linear forms in the logarithms of algebraic numbers, C.R. Acad. Sci. Canada 11(1987), 119124.Google Scholar
[Ma] Masser, D.W., On polynomials and exponential polynomials in several variables, Invent. Math. 63(1981), 8195.Google Scholar
[MW1] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, Math. Ann. 231(1978), 241267.Google Scholar
[MW2] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, II, Acta Arith. 53(1989), 251287.Google Scholar
[MW3] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, III, Ann. Fac. Sci. Toulouse 97(1989), 4375.Google Scholar
[P] Philippon, P., Lemme de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114(1986), 355-383, et 115(1987), 397398.Google Scholar
[PW1] Philippon, P. et Waldschmidt, M., Formes linéaires de logarithmes sur les groupes algébriques commutatifs, Illinois J. Math. 32(1988), 281314.Google Scholar
[PW2] Philippon, et Waldschmidt, M., Lower bounds for linear forms in logarithms. In: Chap. 18 de New Advances in Transcendence Theory, (ed. Baker, A.), Cambridge Univ. Press (1988), 280312.Google Scholar
[DPP] Ping, Dong Ping, Minorations de combinaisons linéaires de logarithmes de nombres algébriques padiques, manuscrit, 1991.Google Scholar
[S] Schneider, Th., Transzendenzuntersuchungen periodischer Funktionen. I. Transzendenzvon Potenzen, J. reine angew. Math. 172(1934), 6569.Google Scholar
[Wl] Waldschmidt, M., A lower bound for linear forms in logarithms, Acta Arith. 37(1980), 257283.Google Scholar
[W2] Waldschmidt, M., Transcendance et exponentielles en plusieurs variables, Invent. Math. 63(1981), 97127.Google Scholar
[W3] Waldschmidt, M., Fonctions auxiliaires et fonctionnelles analytiques, J. Analyse Math. 56(1991), 231279.Google Scholar
[W4] Waldschmidt, M., Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques, Sém. Th. Nombres Bordeaux 3(1991), 129185.Google Scholar
[W5] Waldschmidt, M., Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques (II), Problèmes Diophantiens 1989-1990, Publ. Univ. P. et M. Curie, Paris VI, (2) 93(1991), 36p.Google Scholar
[Wü] Wûstholz, G., A new approach to Baker's theorem on linear forms in logarithms (III), In: Chap. 25 de New Advances in Transcendence Theory, (ed. A. Baker), Cambridge Univ. Press, (1988) 399410.Google Scholar
[Y] Kunrui, Yu, Linear forms in p-adic logarithms, Acta Arith. 53(1989), 107186.Google Scholar