Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Mordell, L. J.
1951.
On the equation ax2+by2?cz2=0.
Monatshefte f�r Mathematik,
Vol. 55,
Issue. 4,
p.
323.
Cassels, J. W. S.
1955.
Bounds for the least solutions of homogeneous quadratic equations.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 51,
Issue. 2,
p.
262.
Von Kneser, Martin
1959.
Kleine Lösungen der diophantischen Gleichungax 2 +by 2 =cz 2.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 23,
Issue. 1,
p.
163.
Mordell, L.J.
1969.
On the magnitude of the integer solutions of the equation ax2 + by2 + cz2 = 0.
Journal of Number Theory,
Vol. 1,
Issue. 1,
p.
1.
1969.
Vol. 30,
Issue. ,
p.
42.
Siegel, Carl Ludwig
Chandrasekharan, K.
and
Maaß, H.
1979.
Gesammelte Abhandlungen.
p.
250.
Lagarias, J. C.
1980.
On the computational complexity of determining the solvability or unsolvability of the equation 𝑋²-𝐷𝑌²=-1.
Transactions of the American Mathematical Society,
Vol. 260,
Issue. 2,
p.
485.
Cochrane, Todd
and
Mitchell, Patrick
1998.
Small Solutions of the Legendre Equation.
Journal of Number Theory,
Vol. 70,
Issue. 1,
p.
62.
Granville, A.
2010.
Rational and Integral Points on Quadratic Twists of a Given Hyperelliptic Curve.
International Mathematics Research Notices,
Narkiewicz, Władysław
2012.
Rational Number Theory in the 20th Century.
p.
131.
Leal-Ruperto, José Luis
2014.
On the magnitude of the Gaussian integer solutions of the Legendre equation.
Journal of Number Theory,
Vol. 145,
Issue. ,
p.
572.
Diaz-Vargas, Javier
and
Vargas de los Santos, Gustavo
2018.
The Legendre equation in Euclidean imaginary quadratic number fields.
Journal of Number Theory,
Vol. 186,
Issue. ,
p.
439.
Leal-Ruperto, José Luis
2019.
On the magnitude of the integer solutions of the semi-diagonal equation ax2 + by2 + cz2 + dxy = 0.
International Journal of Number Theory,
Vol. 15,
Issue. 01,
p.
157.
Leal-Ruperto, José Luis
and
Leep, David B.
2019.
Holzer’s theorem in k[t] .
The Ramanujan Journal,
Vol. 48,
Issue. 2,
p.
351.
Shaw, James D.
Guyker, James
and
Solovjovs, Sergejs
2023.
On Parametric and Matrix Solutions to the Diophantine Equation x2 + dy2 − z2 = 0 Where d Is a Positive Square‐Free Integer.
International Journal of Mathematics and Mathematical Sciences,
Vol. 2023,
Issue. 1,
Skorobogatov, Alexei N.
and
Sofos, Efthymios
2023.
Schinzel Hypothesis on average and rational points.
Inventiones mathematicae,
Vol. 231,
Issue. 2,
p.
673.
Grechuk, Bogdan
2024.
Polynomial Diophantine Equations.
p.
235.