Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T06:06:07.797Z Has data issue: false hasContentIssue false

Mean Values of Character Sums

Published online by Cambridge University Press:  20 November 2018

H. L. Montgomery
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
R. C. Vaughan
Affiliation:
Imperial College, London, England
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a non-principal Dirichlet character χ modulo q,

Let the Pólya-Vingradov inequality asserts that M(x) < q1/2 log q see [7]. in the opposite direction it is a trivial consequence of lemma 1 below and 1. Parseval's identity that if χ is primitive modulo q, then

We show that on average the latter of these estimates is the more precise.

THEOREM 1. For any real k > 0

where the summation is over all non-principal characters modulo q.

THEOREM 2. For any k > 0,

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Bateman, P. T. and Chowla, S., Averages of character sums, Proc. Amer. Math. Soc. 1 (1950), 781787.Google Scholar
2. Burgess, D. A., Character sums and L-series, II, Proc. London Math. Soc. (3). 13 (1963), 524536.Google Scholar
3. Elliott, P. D. T. A., On the mean value off(p), Proc. London Math. Soc. (3). 21 (1970), 2896.Google Scholar
4. Halberstam, H. and Richert, H.-E., Sieve methods (Academic Press, London, 1974).Google Scholar
5. Hooley, C., On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 6079.Google Scholar
6. Jutila, M., On mean values of Dirichlet polynomials with real characters, Acta Arithmetic. 27 (1975), 191198.Google Scholar
7. Montgomery, H. L. and Vaughan, R. C., Exponential sums with multiplicative coefficients, Inventiones Math. 43 (1977), 6982.Google Scholar
8. Pôlya, G., Ûber die Verteilung der quadratishen Reste und Nichtreste, Gottinger Nachrichten, 1918, 2129.Google Scholar
9. Vinogradov, A. I., On the symmetry property for sums with Dirichlet characters, Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1965, no. 1, 2127.Google Scholar