Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T19:30:52.721Z Has data issue: false hasContentIssue false

Markov's Theorem for Orthogonal Matrix Polynomials

Published online by Cambridge University Press:  20 November 2018

Antonio J. Duran*
Affiliation:
Departamento de Análisis Matemático, Universidad de Sevilla, Apdo. 1160., 41080-Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Markov's Theorem shows asymptotic behavior of the ratio between the n-th orthonormal polynomial with respect to a positive measure and the n-th polynomial of the second kind. In this paper we extend Markov's Theorem for orthogonal matrix polynomials.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

[AN] Aptekarev, A. I. and Nikishin, E. M., The scattering problem for a discrete Sturm-Liouville operator, Mat. Sb. 121(1983), 327358; Math. USSR-Sb. 49(1984), 325-355.Google Scholar
[B] Berg, C., Markov's theorem revisited, J. Approx. Theory 78(1994), 260275.Google Scholar
[D1] Duran, A. J., A generalization of Favards Theorem for polynomials satisfying a recurrence relation, J. Approx. Theory 74(1993), 83109.Google Scholar
[D2] Duran, A. J., On orthogonal polynomials with respect to a positive definite matrix of measures, Canad. J. Math. 47(1995), 88112.Google Scholar
[DL] Duran, A. J. and Lopez-Rodriguez, R., Orthogonal matrix polynomials: Zeros and Blumenthal's theorem, J. Approx. Theory 84(1996), 96118.Google Scholar
[DV] Duran, A. J. and van Assche, W., Orthogonal matrix polynomials and higher order recurrence relations, Linear Algebra Appl. 219(1995), 261280.Google Scholar
[G] Gantmacher, F. R., The theory of matrices, Chelsea Publishing Company, New York, 1(1960).Google Scholar
[M] Markov, A., Deux démonstrations de la convergence de certaines fractions continues, Acta Math. 19 (1895), 93104.Google Scholar
[SV] Sinap, A. and van Assche, W., Polynomial interpolation and Gaussian quadrature for matrix valued function, Linear Algebra Appl. 207(1994), 71114.Google Scholar
[S] Stieltjes, T. J., Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. 8(1894), 1-22; [9] (1895), 547.Google Scholar
[Z] Zhani, D., Probleme des moments matriciels sur la droite: construction d'unefamille de solutions et questions d'unicite, Publications du Departement de Mathematiques, Universite Claude-Bernard-Lyon I, NouvelleserieD(1984), 1-84.Google Scholar