Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:05:24.177Z Has data issue: false hasContentIssue false

Lyapunov Stability and Attraction Under Equivariant Maps

Published online by Cambridge University Press:  20 November 2018

Carlos Braga Barros
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR Brasil 87020-900. e-mail: [email protected], [email protected], [email protected]
Victor Rocha
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR Brasil 87020-900. e-mail: [email protected], [email protected], [email protected]
Josiney Souza
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR Brasil 87020-900. e-mail: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $M$ and $N$ be admissible Hausdorff topological spaces endowed with admissible families of open coverings. Assume that $\mathcal{S}$ is a semigroup acting on both $M$ and $N$. In this paper we study the behavior of limit sets, prolongations, prolongational limit sets, attracting sets, attractors, and Lyapunov stable sets (all concepts defined for the action of the semigroup $\mathcal{S}$) under equivariant maps and semiconjugations from $M$ to $N$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Auslander, J., On the proximal relation in topological dynamics. Proc. Amer. Math. Soc. 11(1960), 890–895.http://dx.doi.org/10.1090/S0002-9939-1960-0164335-7 Google Scholar
[2] Auslander, J., Endomorphisms of minimal sets. Duke Math. J. 30(1963),605–614.http://dx.doi.org/10.1215/S0012-7094-63-03065-5 Google Scholar
[3] Auslander, J., Homomorphisms of minimal transformation groups. Topology 9(1970),195–203.http://dx.doi.org/10.1016/0040-9383(70)90041-8 Google Scholar
[4] Bacciotti, A. and Mazzi, L., Stability of dynamical polysystems via families of Lyapunov functions. Nonlinear Anal. 67(2007), no. 7, 2167–2179.http://dx.doi.Org/10.1016/j.na.2OO6.O9.O21 Google Scholar
[5] Bhatia, N. P. and Hajek, O., Local semi-dynamical systems. Lecture Notes in Mathematics, 90, Springer-Verlag, Berlin-New York, 1969.Google Scholar
[6] Bhatia, N. P. and Szegö, G. P., Dynamical systems: stability theory and applications. Lecture Notes in Mathematics, 35, Springer-Verlag, Berlin-New York, 1967.Google Scholar
[7] Bhatia, N. P. and Szegö, G. P., Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, 161, Springer-Verlag, New York-Berlin, 1970.Google Scholar
[8] Braga Barros, C. J. and Souza, J. A., Attractors and chain recurrence for semigroup actions. J. Dynam. Differential Equations 22(2010), no. 4, 723–740.http://dx.doi.Org/10.1007/s10884-010-9164-3 Google Scholar
[9] Braga Barros, C. J. and Souza, J. A., Finest Morse decompositions for semigroup actions on fiber bundles. J. Dynam.Differential Equations 22(2010), no. 4, 741–760.http://dx.doi.Org/10.1007/s10884-010-9165-2 Google Scholar
[10] Braga Barros, C. J., Souza, J. A., and Reis, R. A., Dynamic Morse decompositions for semigroup of homeomorphisms and control systems. J. Dyn. Control Syst. 18(2012), no. 1,1–19.http://dx.doi.Org/10.1007/s10883-012-9132-9 Google Scholar
[11] Braga Barros, C. J., Souza, J. A., and Rocha, V H. L., Lyapunov stability for semigroup actions. Semigroup Forum 88(2014), no. 1, 227–249.Google Scholar
[12] Cheban, D. N., Global attractors of non-autonomous dissipative dynamical systems. Interdisciplinary Mathematical Sciences, 1, World Scientific, Hackensack, NJ, 2004.Google Scholar
[13] Copeland, A.H Jr. and de Groot, J., Linearization of a homeomorphism. Math. Ann. 144(1961), 80–92.http://dx.doi.org/10.1007/BF01396546 Google Scholar
[14] Ellis, R., R. Lectures on topological dynamics. W. A. Benjamin, Inc., New York, 1969.Google Scholar
[15] Ellis, R., Universal minimal sets. Proc. Amer. Math. Soc. 11(1960), 540–543.http://dx.doi.org/10.1090/S0002-9939-1960-0117716-1 Google Scholar
[16] Ellis, R., Point transitive transformation groups. Trans. Amer. Math. Soc. 101(1961), 384–395.http://dx.doi.Org/10.1090/S0002-9947-1961-0131267-5 Google Scholar
[17] Ellis, R., Group-like extensions of minimal sets. Trans. Amer. Math. Soc. 127(1967), 125–135.http://dx.doi.Org/10.1090/S0002-9947-1967-0221492-2 Google Scholar
[18] Ellis, R., and Gottschalk, W. H., Homomorphisms of transformation groups. Trans. Amer. Math. Soc. 94(1960), 258–271.http://dx.doi.org/10.1090/S0002-9947-1960-0123635-1 Google Scholar
[19] Ellis, D. B., Ellis, R., and Nerurkar, M., The topological dynamics of semigroup actions. Trans. Amer. Math. Soc. 353(2001), no. 4, 1279–1320.http://dx.doi.org/10.1090/S0002-9947-00-02704-5 Google Scholar
[20] Furstenberg, H., The structure of distal flows. Amer. J. Math. 85(1963), 477–515.http://dx.doi.org/10.2307/2373137 Google Scholar
[21] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1(1967), 1–49.http://dx.doi.Org/10.1007/BF01692494 Google Scholar
[22] Gleason, A. M., Spaces with a compact Lie group of transformations. Proc. Amer. Math. Soc. 1(1950), 35–43.http://dx.doi.org/10.1090/S0002-9939-1950-0033830-7 Google Scholar
[23] Gottschalk, W. H. and Hedlund, G. A., Topological dynamics. American Mathematical Society Colloquium Publications,36, American Mathematical Society, Providence, RI, 1955.Google Scholar
[24] Heller, A., On equivariant maps of spaces with operators. Ann. of Math. 55(1952), 223–231.http://dx.doi.Org/10.2307/1969776 Google Scholar
[25] Kister, J. M.and Mann, L. N., Equivariant embedding of compact abelian Lie groups of transformations. Math. Ann. 148(1962), 89–93.http://dx.doi.Org/10.1007/BF01344071 Google Scholar
[26] Mostow, G. D., Equivariant embeddings in Euclidean space. Ann. of Math. 65(1957), 432–446.http://dx.doi.Org/10.2307/1970055 Google Scholar
[27] Patrão, M. and San Martin, L. A. B., Semiflows on topological spaces: chain transitivity and semigroups. J. Dynam. Differential Equations 19(2007), 155–180.http://dx.doi.org/10.1007/s10884-006-9032-3 Google Scholar
[28] Patrão, M. and San Martin, L. A. B., Morse decompositions of semiflows on fiber bundles. Discrete Contin. Dyn. Syst. 17(2007), no. 3, 561–587.Google Scholar
[29] Raminelli, S. A. and Souza, J. A., Global attractors for semigroup actions. J. Math. Anal. Appl. 407(2013), no. 2, 316–327.http://dx.doi.Org/10.1016/j.jmaa.2013.05.055 Google Scholar
[30] Souza, J. A., Global attractors in fiber bundles and right invariant systems. J. Differential Equations 257(2014), no. 1, 167–184. http://dx.doi.Org/10.1016/j.jde.2014.03.017 Google Scholar
[31] Souza, J. A. , On limit behavior of semigroup actions on noncompact spaces. Proc. Amer. Math. Soc. 140(2012), 3959–3972.http://dx.doi.org/10.1090/S0002-9939-2012-11248-1 Google Scholar
[32] Tsinias, J., Kalouptsidis, N., and Baccioti, A., Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19(1987), no. 4, 333–354.http://dx.doi.Org/10.1007/BF01704919 Google Scholar
[33] Willard, S., General topology. Reprint of the 1970 original, Dover Publications, Mineola, NY, 2004.Google Scholar