Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:22:50.099Z Has data issue: false hasContentIssue false

Lower Escape Rate of Symmetric Jump-diffusion Processes

Published online by Cambridge University Press:  20 November 2018

Yuichi Shiozawa*
Affiliation:
Graduate School of Natural Science and Technology, Department of Environmental and Mathematical Sciences, Okayama University, Okayama 700-8530, Japan e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish an integral test on the lower escape rate of symmetric jump-diffusion processes generated by regular Dirichlet forms. Using this test, we can find the speed of particles escaping to infinity. We apply this test to symmetric jump processes of variable order. We also derive the upper and lower escape rates of time-changed processes by using those of underlying processes.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Barlow, M., Bass, R., Chen, Z.-Q., and Kassmann, M., Non-local Dirichlet forms and symmetric jump processes,. Trans. Amer. Math. Soc. 361(2009), 19631999.http://dx.doi.Org/10.1090/S0002-9947-08-04544-3 Google Scholar
[2] Bendikov, A. and Saloff-Coste, L., On the regularity of sample paths of sub-elliptic diffusions on manifolds. Osaka J. Math. 42(2005), 677722.Google Scholar
[3] Chen, Z.-Q. and Fukushima, M., Symmetric Markov processes, time change, and boundary theory. London Mathematical Society Monographs Series, 35, Princeton University Press, Princeton, NJ, 2012.Google Scholar
[4] Chen, Z.-Q. and Kumagai, T., Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108(2003), 2762.http://dx.doi.Org/10.1016/S0304-4149(03)00105-4 Google Scholar
[5] Chen, Z.-Q. and Kumagai, T., Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140(2008), 277317.http://dx.doi.Org/10.1007/s00440-007-0070-5 Google Scholar
[6] Dvoretzky, A. and Erdös, P., Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probabilit 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 353367.Google Scholar
[7] Folz, M., Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc. 366(2014), 20892119 http://dx.doi.org/10.1090/S0002-9947-2013-05930-2 Google Scholar
[8] Fukushima, M., Oshima, Y., and Takeda, M., Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19, Walter de Gruyter, Berlin, 2011.Google Scholar
[9] Grigor'yan, A., Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71(1999), 6389.Google Scholar
[10] Grigor'yan, A., Huang, X., and Masamune, J., On stochastic completeness of jump processes. Math. Z. 27(2012), 12111239.http://dx.doi.Org/10.1007/s00209-011-0911-x Google Scholar
[11] Hendricks, W. J., Lower envelopes near zero and infinity for processes with stable components. Z. Wahrscheinlichkeitstheorie verw. Geb. 16(1970), 261.–278.http://dx.doi.Org/10.1007/BF00535132 Google Scholar
[12] Huang, X., Escape rate of Markov chains on infinite graphs. J. Theoret. Probab. 27(2014), 634682.http://dx.doi.Org/10.1007/s10959-012-0456-x Google Scholar
[13] Huang, X., A note on the volume growth criterion for stochastic completeness of weighted graphs. Potential Anal. 40(2014), 117142.http://dx.doi.Org/10.1007/s11118-013-9342-0 Google Scholar
[14] Huang, X. and Shiozawa, Y., Upper escape rate of Markov chains on weighted graphs. Stochastic Process. Appl. 124(2014), 317347.http://dx.doi.Org/10.1016/j.spa.2013.08.004 Google Scholar
[15] Ichihara, K., Some global properties of symmetric diffusion processes. Publ. Res. Inst. Math. Sci. 14(1978), 441486.http://dx.doi.Org/10.2977/prims/1195189073 Google Scholar
[16] Khintchine, A., Zwei Sätze über stochastische Prozesse mit stabilen Verteilungen. Rec. Math. [Mat. Sbornik] N.S., 3(1938), 577584.Google Scholar
[17] Khoshnevisan, D., Escape rates for Lévy processes. Studia Sci. Math. Hungar. 33(1997), 177183.Google Scholar
[18] Masamune, J. and Uemura, T., Conservation property of symmetric jump processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(2011), no. 3, 650662.http://dx.doi.org/10.1214/09-AIHP368 Google Scholar
[19] Masamune, J., Uemura, T., and Wang, J., On the conservativeness and the recurrence of symmetric jump-diffusions. J. Funct. Anal. 263(2012), 39844008.http://dx.doi.Org/10.1016/j.jfa.2O12.09.014 Google Scholar
[20] Metafune, G. and Spina, C., Heat kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete Contin. Dyn. Syst. 32(2012), 22852299.http://dx.doi.org/10.3934/dcds.2012.32.2285 Google Scholar
[21] Ôkura, H., Recurrence criteria for skew products of symmetric Markov processes. Forum Math. 1(1989), 331357.Google Scholar
[22] Ôkura, H., A new approach to the skew product of symmetric Markov processes. Mem. Fac. Engrg. Design Kyoto Inst. Tech. Ser. Sci. Tech. 46(1997), 112.Google Scholar
[23] Ôkura, H., Capacitary upper estimates for symmetric Dirichlet forms. Potential Anal. 19(2003), 211235.http://dx.doi.Org/10.1023/A:1024037212801 Google Scholar
[24] Ôkura, H. and Uemura, T., On the recurrence of symmetric jump processes. Forum Math., to appear.Google Scholar
[25] Ouyang, S., Volume growth, comparison theorem and escape rate of diffusion process. arxiv:1310.3996v1Google Scholar
[26] Shiozawa, Y., Conservation property of symmetric jump-diffusion processes. Forum Math. 27(2015), 519548.Google Scholar
[27] Shiozawa, Y., Escape rate of symmetric jump-diffusion processes. Trans. Amer. Math. Soc, to appear.Google Scholar
[28] Shiozawa, Y. and Uemura, T., Explosion of jump-type symmetric Dirichlet forms on ℝd. J. Theoret. Probab. 27(2014), 404432.http://dx.doi.org/10.1007/s10959-012-0424-5 Google Scholar
[29] Sturm, K.-T., Sharp estimates for capacities and applications to symmetric diffusions. Probab. Theory Related Fields 103(1995), 7389.http://dx.doi.Org/10.1007/BF01199032 Google Scholar
[30] Takeuchi, J., On the sample paths of the symmetric stable processes in spaces. J. Math. Soc. Japan 16(1964), 109127.http://dx.doi.org/10.2969/jmsj701620109 Google Scholar