Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T19:55:12.181Z Has data issue: false hasContentIssue false

Localization of Right Noetherian Rings at Semiprime Ideals

Published online by Cambridge University Press:  20 November 2018

J. Lambek
Affiliation:
McGill University, Montreal, Quebec
G. Michler
Affiliation:
Justus Liebig Universitàt, Giessen, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [11] and [12] we investigated the process of localization of right Noetherian rings R at prime ideals. We shall now extend these investigations to semiprime ideals N of R.

In Section 2 we show that localizing at the injective right R-module E(R/N) is the same as localizing with respect to the multiplicative set

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Faith, C., Orders in semilocal rings, Bull. Amer. Math. Soc. 77 (1971), 960962.Google Scholar
2. Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448.Google Scholar
3. Goldie, A. W., Semiprime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201220.Google Scholar
4. Goldie, A. W., Localization in non-commutative rings, J. Algebra 5 (1967), 89105.Google Scholar
5. Goldie, A. W., The structure of Noetherian rings, Springer Verlag, Lecture Notes in Mathematics 246 (1972), 214321.Google Scholar
6. Goldman, O., Rings and modules of quotients, J. Algebra 13 (1969), 1047.Google Scholar
7. Heinicke, A. G., On the ring of quotients at a prime ideal of a right Noetherian ring, Can. J. Math. 24 (1972), 703712.Google Scholar
8. Lambek, J., Lectures on rings and modules (Waltham, Toronto, London, 1966).Google Scholar
9. Lambek, J., Torsion theories, additive semantics and rings of quotients, Springer Verlag, Lecture Notes in Mathematics 177 (Berlin, Heidelberg, New York, 1971).Google Scholar
10. Lambek, J., Bicommutators of nice infectives, J. Algebra 21 (1972), 6073.Google Scholar
11. Lambek, J. and Michler, G., The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra 25 (1973), 364389.Google Scholar
12. Lambek, J. and Michler, G., Completions and classical localizations of right Noetherian rings, Pacific J. Math. 48 (1973), 133140.Google Scholar
13. Lesieur, L. and Croisot, R., Extension au cas non-commutatif d'un théorème de Krull et d'un lemme d*Artin-Rees, J. Reine Angew. Math. 204 (1960) 216220.Google Scholar
14. Matlis, E., Infective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511528.Google Scholar
15. Matlis, E., Some properties of Noetherian domains of Dimension 1, Can. J. Math. 13 (1967), 569586.Google Scholar
16. Michler, G., Right symbolic powers and classical localization in right Noetherian rings, Math. Z. 127 (1972), 5769.Google Scholar
17. Small, L., Orders in Artinian rings, J. Algebra 4 (1966), 1341.Google Scholar
18. Small, L., Orders in Artinian rings, II, J. Algebra 9 (1968), 266273.Google Scholar
19. Small, L., The embedding problem for Noetherian rings, Bull. Amer. Math. Soc. 75 (1969), 147148.Google Scholar
20. Walker, C. L. and Walker, E., Quotient categories and rings of quotients, Rocky Mountain J. Math. 2 (1972), 513555.Google Scholar