Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:07:14.989Z Has data issue: false hasContentIssue false

Local Topological Properties and One Point Extensions

Published online by Cambridge University Press:  20 November 2018

John Mack
Affiliation:
University of Kentucky, Lexington, Kentucky
Marlon Rayburn
Affiliation:
University of Kentucky, Lexington, Kentucky
Grant Woods
Affiliation:
University of Manitoba, Winnipeg, Manitoba
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1957, Mrowka [12] showed that a locally paracompact space admits a one point paracompactification (see also [2, Chapter 9, § 4, Exercise 27]). Similarly, in [9] Isiwata obtained a one point realcompactincation for locally realcompact spaces. Recently a number of authors (see [11, 16; 17; 18; 21]) have constructed one point P-extensions of local P-spaces for a variety of topological properties P. It is the purpose of this paper to draw together the various techniques used by the above mentioned authors and to study the set (lattice) of all one point P-extensions of a particular space.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1972

References

1. Arens, R., Extensions of coverings, of pseudometrics, and of linear-space-valued mappings, Can. J. Math. 5 (1953), 211215.Google Scholar
2. Bourbaki, N., Topologie generale, Chapitre IX (Herman, Paris, 1958).Google Scholar
3. Engelking, R. and Mrowka, S., On E-compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 6 (1958), 429435.Google Scholar
4. Gillman, L. and Jerison, M., Rings of continuous functions (Van Nostrand, Princeton, 1960).Google Scholar
5. Henriksen, M. and Isbell, J., Some properties of compactifications, Duke Math. J. 25 (1958), 83105.Google Scholar
6. Herrlich, H., Forsetzbarheit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume, Math. Z. 96 (1967), 6472.Google Scholar
7. Herrlich, H. ζ-kompakte Ràume, Math. Z. 96 (1967), 228255.Google Scholar
8. Herrlich, H. and van der Slot, J., Properties which are related to compactness, Nederl. Akad. Wetensch. Proc. Ser. A 70 (1967), 524529.Google Scholar
9. Isiwata, T., On locally Q-complete spaces. I, II, and III, Proc. Japan Acad. 35 (1959), 232236, 263-267, 431-434.Google Scholar
10. Magill, K. D., The lattice of compactifications of a locally compact space, Proc. London Math. Soc. 18 (1968), 321–244.Google Scholar
11. Marin, F., Convergence in E-completely regular spaces, Doctorial Dissertation, Penn. State Univ., University Park, 1968.Google Scholar
12. Mrowka, S., On local topological properties, Bull. Acad. Polon. Sci. CI. III 5 (1957), 951956.Google Scholar
13. Mrowka, S., An outline of the theory of Q-spaces (Warazawa, 1959) (Polish).Google Scholar
14. Mrowka, S., On the union of Q-spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 6 (1958), 161163.Google Scholar
15. Mrowka, S., Some comments on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 443448.Google Scholar
16. Mrowka, S. and Tsai, J. H., On local properties of topological spaces (to appear).Google Scholar
17. Porter, J., On locally H-closed spaces, Proc. London Math Soc. 20 (1970), 193204.Google Scholar
18. Salbany, S., Completeness of C8﹛X), Nederl. Akad. Wetensch. Proc. Ser. A73 (= Indag. Math. 32) (1970), 182-186.Google Scholar
19. Shapiro, H., Extensions of pseudometrics, Can. J. Math. 18 (1966), 991998.Google Scholar
20. Tamano, H., On compactifications, J. Math. Kyoto Univ. 1 (1962), 162193.Google Scholar
21. Vidossich, G., Topological pseudo- ﬡ-compact spaces, Proc. Amer. Math. Soc. 27 (1971), 195198.Google Scholar
22. Grant Woods, R., Some ﬡo-bounded subsets of Stone-Čech compactifications, Israel J. Math. 9 (1971), 250256.Google Scholar
23. Zenor, P., A note on Z-mappings and WZ-mappings, Proc. Amer. Math. Soc. 23 (1969), 273275.Google Scholar