Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T07:01:11.994Z Has data issue: false hasContentIssue false

Linear Maps Preserving Matrices of Local Spectral Radius Zero at a Fixed Vector

Published online by Cambridge University Press:  07 January 2019

Abdellatif Bourhim
Affiliation:
Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA Email: [email protected]
Constantin Costara
Affiliation:
Faculty of Mathematics and Informatics, Ovidius University of Constanţa, Mamaia Boul. 124, 900527, Constanţa, Romania Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we characterize linear maps on matrix spaces that preserve matrices of local spectral radius zero at some fixed nonzero vector.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

References

Aiena, P., Fredholm and local spectral theory, with applications to multipliers . Kluwer Academic Publishers, Dordrecht, 2004.Google Scholar
Alaminos, J., Brešar, M., Šemrl, P., and Villena, A. R., A note on spectrum-preserving maps . J. Math. Anal. Appl. 387(2012), 595603. https://doi.org/10.1016/j.jmaa.2011.09.024.Google Scholar
Alaminos, J., Extremera, J., and Villena, A. R., Approximately spectrum-preserving maps . J. Funct. Anal. 261(2011), 233266. https://doi.org/10.1016/j.jfa.2011.02.020.Google Scholar
Alaminos, J., Brešar, M., Extremera, J., and Villena, A. R., Maps preserving zero products . Studia Math. 193(2009), 131159. https://doi.org/10.4064/sm193-2-3.Google Scholar
Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras . J. London Math. Soc. 62(2000), 917924. https://doi.org/10.1112/S0024610700001514.Google Scholar
Aupetit, B., Sur les transformations qui conservent le spectre. In: Banach algebras 97 (Blaubeuren), de Gruyter, Berlin, 1998, 55–78.Google Scholar
Aupetit, B. and Mouton, H. T., Spectrum preserving linear mappings in Banach algebras . Studia Math. 109(1994), 91100. https://doi.org/10.4064/sm-109-1-91-100.Google Scholar
Baribeau, L. and Ransford, T., Non-linear spectrum-preserving maps . Bull. London Math. Soc. 32(2000), 814. https://doi.org/10.1112/S0024609399006426.Google Scholar
Bhatia, R., Šemrl, P., and Sourour, A., Maps on matrices that preserve the spectral radius distance . Studia Math. 134(1999), 99110.Google Scholar
Botta, P., Pierce, S., and Watkins, W., Linear transformations that preserve the nilpotent matrices . Pacific J. Math. 104(1983), 3946. https://doi.org/10.2140/pjm.1983.104.39.Google Scholar
Bourhim, A. and Mabrouk, M., Jordan product and local spectrum preservers . Studia Math. 234(2016), 97120.Google Scholar
Bourhim, A. and Mabrouk, M., Maps preserving the local spectrum of Jordan product of matrices . Linear Algebra Appl. 484(2015), 379395. https://doi.org/10.1016/j.laa.2015.06.034.Google Scholar
Bourhim, A. and Mashreghi, J., A survey on preservers of spectra and local spectra. In: Invariant subspaces of the shift operator, Contemp. Math., 638, American Mathematical Society, Providence, RI, 2015, pp. 45–98. https://doi.org/10.1090/conm/638/12810.Google Scholar
Bourhim, A. and Mashreghi, J., Maps preserving the local spectrum of product of operators . Glasgow Math. J. 57(2015), 709718. https://doi.org/10.1017/S0017089514000585.Google Scholar
Bourhim, A. and Mashreghi, J., Maps preserving the local spectrum of triple product of operators . Linear Multilinear Algebra 63(2015), 765773. https://doi.org/10.1080/03081087.2014.898299.Google Scholar
Bourhim, A. and Mashreghi, J., Local spectral radius preservers . Integral Equations Operator Theory 76(2013), 95104. https://doi.org/10.1007/s00020-013-2041-9.Google Scholar
Bourhim, A., Burgos, M., and Shulman, V. S., Linear maps preserving the minimum and reduced minimum moduli . J. Funct. Anal. 258(2010), 5066. https://doi.org/10.1016/j.jfa.2009.10.003.Google Scholar
Bourhim, A. and Miller, V., Linear maps on ${\mathcal{M}}_{n}(\mathbb{C})$ preserving the local spectral radius. Studia Math. 188 (2008), 67–75. https://doi.org/10.4064/sm188-1-4.Google Scholar
Bourhim, A. and Ransford, T., Additive maps preserving local spectrum . Integral Equations Operator Theory 55(2006), 377385. https://doi.org/10.1007/s00020-005-1392-2.Google Scholar
Bračič, J. and Müller, V., Local spectrum and local spectral radius of an operator at a fixed vector . Studia Math. 194(2009), 155162. https://doi.org/10.4064/sm194-2-3.Google Scholar
Brešar, M. and Šemrl, P., Linear maps preserving the spectral radius . J. Funct. Anal. 142(1996), 360368. https://doi.org/10.1006/jfan.1996.0153.Google Scholar
Costara, C., Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., 145, No. 5, (2017) 2081–2087. https://doi.org/10.1090/proc/13364.Google Scholar
Costara, C., Surjective maps on matrices preserving the local spectral radius distance . Linear Multilinear Algebra 62(2014), 988994. https://doi.org/10.1080/03081087.2013.801967.Google Scholar
Costara, C., Linear maps preserving operators of local spectral radius zero . Integral Equations Operator Theory 73(2012), 716. https://doi.org/10.1007/s00020-012-1953-0.Google Scholar
Costara, C., Maps on matrices that preserve the spectrum . Linear Algebra Appl. 435(2011), 26742680. https://doi.org/10.1016/j.laa.2011.04.026.Google Scholar
Costara, C., Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector . Arch. Math. 95(2010), 567573. https://doi.org/10.1007/s00013-010-0191-4.Google Scholar
Costara, C. and Repovš, D., Nonlinear mappings preserving at least one eigenvalue . Studia Math. 200(2010), 7989. https://doi.org/10.4064/sm200-1-5.Google Scholar
Dieudonné, J., Sur une généralisation du groupe orthogonal a quatre variables . Arch. Math. 1(1949), 282287. https://doi.org/10.1007/BF02038756.Google Scholar
Flanders, H., On spaces of linear transformations with bounded rank . J. London Math. Soc. 37(1962), 1016. https://doi.org/10.1112/jlms/s1-37.1.10.Google Scholar
Frobenius, G., Ueber die Darstellung der endlichen Gruppen durch lineare Substitutionen . Berl. Ber. (1897), 9941015.Google Scholar
Hou, J. C., Li, C. K., and Wong, N. C., Maps preserving the spectrum of generalized Jordan product of operators . Linear Algebra Appl. 432(2010), 10491069. https://doi.org/10.1016/j.laa.2009.10.018.Google Scholar
Hou, J. C., Li, C. K., and Wong, N. C., Jordan isomorphisms and maps preserving spectra of certain operator products . Studia Math. 184(2008), 3147. https://doi.org/10.4064/sm184-1-2.Google Scholar
Jafarian, A. A. and Sourour, A. R., Spectrum-preserving linear maps . J. Funct. Anal. 66(1986), 255261. https://doi.org/10.1016/0022-1236(86)90073-X.Google Scholar
Laursen, K. B. and Neumann, M. M., An introduction to local spectral theory. London Mathematical Society Monographs, New Series, 20, The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
Marcus, M. and Moyls, B. N., Linear transformations on algebras of matrices . Canad. J. Math. 11(1959), 6166. https://doi.org/10.4153/CJM-1959-008-0.Google Scholar
Miller, T. L., Miller, V. G., and Neumann, M. M., Local spectral properties of weighted shifts . J. Operator Theory 51(2004), 7188.Google Scholar
Molnár, L. and Barczy, M., Linear maps on the space of all bounded observables preserving maximal deviation . J. Funct. Anal. 205(2003), 380400. https://doi.org/10.1016/S0022-1236(03)00213-1.Google Scholar
Molnár, L., Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s theorem . J. Funct. Anal. 194(2002), 248262. https://doi.org/10.1006/jfan.2002.3970.Google Scholar
Šemrl, P., Linear maps that preserve the nilpotent operators . Acta Sci. Math. 61(1995), 523534.Google Scholar
Sourour, A. R., Invertibility preserving linear maps on  ${\mathcal{L}}(X)$ . Trans. Amer. Math. Soc. 348 (1996), 13–30. https://doi.org/10.1090/S0002-9947-96-01428-6.Google Scholar
Torgašev, A., On operators with the same local spectra . Czechoslovak Math. J. 48(1998), 7783. https://doi.org/10.1023/A:1022467611697.Google Scholar