Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T00:55:56.413Z Has data issue: false hasContentIssue false

Lifting the Commutant of a Subnormal Operator

Published online by Cambridge University Press:  20 November 2018

Robert F. Olin
Affiliation:
Virginia Polytechnic Institute and State University, Blacksburg, Virginia
James E. Thomson
Affiliation:
Virginia Polytechnic Institute and State University, Blacksburg, Virginia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S be a subnormal operator on a Hilbert space and let N be its minimal normal extension on the Hilbert space ℋ. (We refer the reader to [5, 15] for the basic material on subnormal operators.) Denote the commutant and double commutant of an operator T by ﹛T﹜’ and ﹛T﹜”, respectively.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Abrahamse, M. B., Commuting subnormal operators, Illinois J. Math, (to appear).Google Scholar
2. Abrahamse, M. B., Some examples on lifting the commutant of a subnormal operator, (preprint).Google Scholar
3. Abrahamse, M. B. and Douglas, R. G., A class of subnormal operators related to multiply connected domains, Advances in Math. 19 (1976), 106148.Google Scholar
4. Ball, J., Olin, R. and Thomson, J., Weakly closed algebras of subnormal operators, Illinois J. Math, (to appear).Google Scholar
5. Bram, J., Subnormal operators, Duke Math. J. 22 (1955), 7594.Google Scholar
6. Clancey, K. F. and Morrel, B. B., The essential spectrum of some Toeplitz operators, Proc. Amer. Math. Soc. 44 (1974), 129134.Google Scholar
7. Conway, J. B., Functions of One Complex Variable (Springer Verlag Inc., New York, 1973).Google Scholar
8. Conway, J. B. and Olin, R. F., A Functional Calculus for Subnormal Operators II (Memoirs of the Amer. Math. Soc, Providence, 1977).Google Scholar
9. Conway, J. B. and Wu, P. Y., The splitting of A(T1 ® T2) and related questions, Indiana Univ. Math. J. 26 (1977), 4156.Google Scholar
10. Davie, A., Dirichlet algebras of analytic functions, J. Functional Analysi. 6 (1970), 348355.Google Scholar
11. de Branges, L., The Riemann mapping theorem, (preprint).Google Scholar
12. de Branges, L. and Trutt, D., Quantum Cesàro Operators, (preprint).Google Scholar
13. Douglas, R. G., On the operator equation S*X T = X and related topics, Acta Sci. Math. (Szeged). 30 (1969), 1932.Google Scholar
14. Duren, P. L., Theory of Hp Spaces (Academic Press, New York, 1970).Google Scholar
15. Halmos, P. R., A Hilbert Space Problem Book (Van Nostrand, New York, 1970).Google Scholar
16. Lubin, A., A subnormal semigroup without normal extension, (preprint).Google Scholar
17. Mlak, W., Lifting of commutants of subnormal representations of hypodirichlet algebras, Proc. Amer. Math. Soc. (to appear).Google Scholar
18. Radjavi, H. and Rosenthal, P., Invariant Subs paces (Springer Verlag Inc., New York, 1973).Google Scholar
19. Sarason, D., Weak-star generators of Hx', Pacific J. Math. 17 (1966), 519528.Google Scholar
20. Sarason, D., Weak-star density of polynomials, J. fur Reine Angew. Math. 252 (1972), 115.Google Scholar
21. Slocinski, M., Normal extensions of commutative subnormal operators, Studia Math. 59 (1976), 259266.Google Scholar
22. Yoshino, T., Subnormal operator with a cyclic vector, Tohoku Math. J. (2). 21 (1969), 4755.Google Scholar
23. Yoshino, T., A note on a result of Bram, Duke Math. J. 43 (1976), 875.Google Scholar