Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T07:00:32.924Z Has data issue: false hasContentIssue false

Lie Elements and Knuth Relations

Published online by Cambridge University Press:  20 November 2018

Manfred Schocker*
Affiliation:
Mathematical Institute, 24–29 St. Giles’, Oxford OX1 3LB, U.K. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A coplactic class in the symmetric group ${{\mathcal{S}}_{n}}$ consists of all permutations in ${{\mathcal{S}}_{n}}$ with a given Schensted $Q$-symbol, and may be described in terms of local relations introduced by Knuth. Any Lie element in the group algebra of ${{\mathcal{S}}_{n}}$ which is constant on coplactic classes is already constant on descent classes. As a consequence, the intersection of the Lie convolution algebra introduced by Patras and Reutenauer and the coplactic algebra introduced by Poirier and Reutenauer is the direct sum of all Solomon descent algebras.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2004

Footnotes

The author was supported by the Research Chairs of Canada.

References

[AS] Aguiar, M. and Sottile, F., Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Preprint math.CO/020328228.Google Scholar
[BL93] Blessenohl, D. and Laue, H., Algebraic combinatorics related to the free Lie algebra. In: Publ. IRMA Strasbourg, Actes 29, Séminaire Lotharingien, 1993, 121.Google Scholar
[BL96] Blessenohl, D. and Laue, H., On the descending Loewy series of Solomon's descent algebra. J. Algebra 180(1996), 698724.Google Scholar
[BS] Blessenohl, D. and Schocker, M., Noncommutative character theory of symmetric groups I: the Jöllenbeck method. Preprint.Google Scholar
[Cha00] Chapoton, F., Bigèbres différentielles graduées associées aux permutoèdres, associaèdres et hypercubes. Ann. Inst. Fourier (Grenoble) 50(2000), 11271153.Google Scholar
[DHT] Duchamp, G., Hivert, F. and Thibon, J.-Y., Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras. Int. J. Alg. Comput. 12(2002), 671717.Google Scholar
[Duc91] Duchamp, G., Orthogonal projection onto the free Lie algebra. Theoret. Comput. Sci. 79(1991), 227239.Google Scholar
[Dyn47] Dynkin, E. B., Calculation of the coefficients of the Campbell-Hausdorff formula. Dokl. Akad. Nauk SSSR 57(1947), 323326.Google Scholar
[GKL+95] Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. and Thibon, J.-Y., Noncommutative symmetric functions. Adv. in Math. 112(1995), 218348.Google Scholar
[GR89] Garsia, A. M. and Reutenauer, C., A decomposition of Solomon's descent algebra. Adv. inMath. 77(1989), 189262.Google Scholar
[Jöl99] Jöllenbeck, A., Nichtkommutative Charaktertheorie der symmetrischen Gruppen. Bayreuth. Math. Schr. 56(1999), 141.Google Scholar
[JR01] Jöllenbeck, A. and Reutenauer, C., Eine Symmetrieeigenschaft von Solomons Algebra und der höheren Lie-Charaktere. Abh. Math. Sem. Univ. Hamburg 71(2001), 105111.Google Scholar
[Knu70] Knuth, D. E., Permutations, matrices and generalized Young-tableaux. Pacific J. Math. 34(1970), 709727.Google Scholar
[LR98] Loday, J.-L. and Ronco, M. O., Hopf algebra of the planar binary trees. Adv. in Math. 139(1998), 293309.Google Scholar
[LS81] Lascoux, A. and Schützenberger, M. P., Le monoïde plaxique. In: Noncommutative Structures in algebra and geometric combinatorics, de Luca, A. Ed., Quaderni della Ricerca Scientifica del C.N.R., Roma, 1981.Google Scholar
[MM65] Milnor, J. W. and Moore, J. C., On the structure of Hopf algebras. Ann. of Math. 81(1965), 211264.Google Scholar
[MR95] Malvenuto, C. and Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(1995), 967982.Google Scholar
[PR95] Poirier, S. and Reutenauer, C., Algébres de Hopf de Tableaux. Ann. Sci. Math. Québec 19(1995), 7990.Google Scholar
[PR01] Patras, F. and Reutenauer, C., Lie representations and an algebra containing Solomon’s. J. Algebraic Combin. 16(2002), 301314.Google Scholar
[Reu93] Reutenauer, C., Free Lie Algebras. London Math. Soc. Monogr. (N.S.) 7, Oxford University Press, 1993.Google Scholar
[Sch61] Schensted, C., Longest Increasing and Decreasing Subsequences. Canad. J. Math. 13(1961), 179191.Google Scholar
[Sch63] Schützenberger, M. P., Quelques remarques sur une construction de Schensted. Math. Scand. 12(1963), 117128.Google Scholar
[Sol76] Solomon, L., A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(1976), 255268.Google Scholar
[Spe48] Specht, W., Die linearen Beziehungen zwischen höheren Kommutatoren. Math. Z. 51(1948), 367376.Google Scholar
[Wev49] Wever, F., Über Invarianten in Lieschen Ringen. Math. Ann. 120(1949), 563580.Google Scholar