Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T14:26:22.014Z Has data issue: false hasContentIssue false

Les θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques

Published online by Cambridge University Press:  20 November 2018

Georges Gras*
Affiliation:
Villa la Gardette, chemin Château Gagniére, F–38520 Le Bourg d'Oisans, France courriel email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $K/\mathbb{Q}$ be Galois and let $\eta \,\in \,{{K}^{\times }}$ be such that $\text{Re}{{\text{g}}_{\infty }}\left( \eta \right)\,\ne \,0$. We define the local $\theta $-regulator $\Delta _{p}^{\theta }\left( \eta \right)\,\in \,{{\mathbb{F}}_{p}}$ for the ${{\mathbb{Q}}_{p}}$-irreducible characters $\theta $ of $G=\,\text{Gal}\left( K/\mathbb{Q} \right)$. Let ${{V}_{\theta }}$ be the $\theta $-irreducible representation. A linear representation ${{\mathfrak{L}}^{\theta }}\,\simeq \,\delta \,{{V}_{\theta }}$ is associated with $\Delta _{p}^{\theta }\left( \eta \right)$ whose nullity is equivalent to $\delta \,\ge \,1$. Each $\Delta _{p}^{\theta }\left( \eta \right)$ yields $\text{R}eg_{p}^{\theta }\left( \eta \right)$ modulo $p$ in the factorization ${{\Pi }_{\theta }}{{\left( \text{Reg}_{p}^{\theta }\left( \eta \right) \right)}^{\phi \left( 1 \right)}}$ of $\text{Reg}_{p}^{G}\,\left( \eta \right)\,:=\frac{\text{Re}{{\text{g}}_{p}}\left( \eta \right)}{_{p}[K\,:\,\mathbb{Q}]}$ (normalized $p$-adic regulator). From Prob $\left( \Delta _{p}^{\theta }\left( \eta \right)=0\,\text{and}\,{{\mathfrak{L}}^{\theta }}\simeq \delta {{V}_{\theta }} \right)\,\le {{p}^{-f{{\delta }^{2}}}}$ ($f\,\ge \,1$ is a residue degree) and the Borel-Cantelli heuristic, we conjecture that for $p$ large enough, $\text{Reg}_{p}^{G}\left( \eta \right)$ is a $p$-adic unit or ${{p}^{\phi \left( 1 \right)}}\,||\,\text{Reg}_{p}^{G}\left( \eta \right)$ (a single $\theta $ with $f\,=\,\delta \,=\,1$); this obstruction may be led assuming the existence of a binomial probability law confirmed through numerical studies (groups ${{C}_{3,}}\,{{C}_{5}},\,{{D}_{6}}$) is conjecture would imply that for all $p$ large enough, Fermat quotients, normalized $p$-adic regulators are $p$-adic units and that number fields are $p$-rational.We recall some deep cohomological results that may strengthen such conjectures.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

Références

[P] Belabas et al, K.. Pari/gp Version z.þ.h Laboratoire AzX, Université de Bordeaux I.http://sagemath.org/ Google Scholar
[Coa] Coates, J., p–adic L–functions and Iwasawa's theory. Dans : Algebraic number fields :L–functions and Galois properties Academic Press, London, 1977, pp. 269–353.Google Scholar
[BK] Coates, J., Raghuram, A., Saikia, A., et Sujatha, R. (Eds),The Bloch–Kato conjecture for the Riemann Zeta function, Conf. July 2012, London Math. Soc. Lecture Note Series (2015).Google Scholar
[C] Conrad, K.,The origin of representation theory. Enseign. Math. 44(1998),361392.Google Scholar
[CDP] Crandall, R., Dilcher, K., et Pomerance, C. , A search for Wieferich and Wilson primes. Math.Comp. 66(1997), no.217,449 .http://dx.doi.org/10.1090/S0025-5718-97-00791-6 Google Scholar
[EM] Ernvall, R. et Metsänkylä, T., On the p-divisibility of Fermât quotients. Math. Comp. 66(1997), 13531365.http://dx.doi.org/10.1090/S0025-5718-97-00843-0 Google Scholar
[Grl] Gras, G., Class field theory. From theory to practice. Springer Monographs in Mathematics, Springer-Verlag 2003 ; second corrected printing 2005. http://dx.doi.Org/10.1007/978-3-662-11323-3 Google Scholar
[Gr2] Gras, G., Étude probabiliste des quotients de Fermat. Functiones et Approximatio, Commentarii Mathematici, Vol. 54, 1 (2016).https://www.dropbox.com/sh/64q8ezazl6b4z7d/AABhBL3Fvnf_YNTHV0CzhR8ma?dl=0 Google Scholar
[Gr3]Gras, G., Remarks on K2 of number fields. J. Number Theory 23(1986), 322335. http://dx.doi.Org/10.101 6/0022-314X(86)90077-6 Google Scholar
[Gr4] Gras, G., Programmes PARI. https://www.dropbox.com/sh/64q8ezazl6b4z7d/AABhBL3Fvnf_YNTHV0CzhR8ma?dl=0Google Scholar
[Gr5] Gras, G., Compléments heuristiques et probabilistes sur les quotients de Fermat, 2016 (preprint).https://www.dropbox.com/sh/64q8ezazl6b4z7d/AABhBL3Fvnf_YNTHV0GzhR8ma?dl=0 Google Scholar
[Gr6] Gras, G., On the order modulo p of an algebraic number. 2016 (submitted).https://www.dropbox.com/sh/64q8ezazl6b4z7d/AABhBL3Fvnf_YNTHV0GzhR8ma?dl=0 Google Scholar
[GM] Graves, H. et Murty, M. R., The abc conjecture and non-Wieferich primes in arithmetic progressions. J. Number Theory 133(2013), 18091813.http://dx.doi.org/10.101 6/j.jnt.2O12.1O.O12 Google Scholar
[Gre] Greenberg, R., Iwasawa theory–past and present.In : Class field theory – its centenary and prospect (Tokyo 1998). Adv. Stud. Pure Math, 30. Math. Soc. Japan, Tokyo, 2001, pp. 335385.Google Scholar
[Hat] Hatada, K., Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at 2-p. Comment.Math. Univ. St. Paul. 36(1987), no. 1, 4151.Google Scholar
[H-B] Heath-Brown, R.,An estimate For Heilbronn's exponential sum. In : Conference in honor of Heini Halberstam. Analytic Number Theory, 2 (1996), Birkhüser 1996.http://eprints.maths.ox.ac.Uk/1 5 7/1 /hei lbron.pdf Google Scholar
[J] Jaulent, J-F., Sur l' indépendance l–adique de nombres algébriques. J. Number Theory 20(1985),no. 2, 149158. http://dx.doi.org/10.101 6/0022-314X(85)90035-6 Google Scholar
[JN] Jaulent, J-F. et Quang Do, T. Nguyen, Corps p-rationnels, corps p-réguliers, et ramification restreinte. J. Théor. Nombres Bordeaux 5(1993), 343363.http://dx.doi.Org/10.58O2/jtnb.98 Google Scholar
[KR1] Keller et, W. Richstein, J., Solutions of the congruence ap~l = 1 (mod pr). Math. Comp.74(2004), no. 250, 927936.http://dx.doi.org/10.1090/S0025-5718-04-01666-7 Google Scholar
[KR2] Keller et, W., The continuing search for Wieferich primes. Math. Comp. 75(2005), no. 251,15591563.http://dx.doi.org/10.1090/S0025-5718-05-01723-0 Google Scholar
[Ko] Kolster, M., The norm residue theorem and the Quillen-Lichtenbaum conjecture, Dans : J. Coates, et al., eds. The Bloc–Kato conjecture for the Riemann Zeta function, Conf. July 2012,London Math. Soc. Lecture Note Series (2015).Google Scholar
[MN] Movahhedi et, A. Nguyen Quang Do, T., Sur l'arithmétique des corps de nombres p–rationnels. Dans : Séminaire de Théorie des Nombres, Paris 1987-88, Progr. Math. 81, Birkhäuser Boston,1990, pp. 155200.Google Scholar
[Ng] Nguyen Quang Do, T., On the Determinantal approach to the Tamagawa number conjecture. Dans : J. Coates et al. eds., The Bloch-Kato conjecture for the Riemann Zeta function, Conf. July 2012, London Math. Soc. Lecture Note Series(2015).Google Scholar
[OS] Ostafe et, A. Shparlinski, I. E., Pseudorandomness and dynamics of Fermat quotients. SIAM J. Discrete Math. 25(2011), no. 1, 5071. http://dx.doi.Org/10.1137/100798466 Google Scholar
[Sel] JSerre, -P., Représentations linéaires des groupes finis, cinquiéme dition corrigée et augmentée de nouveaux exercices, Coll. Méthodes, Hermann 1998.Google Scholar
[Se2] JSerre, -P., Sur le résidu de la fonction zêta p–adique d'un corps de nombres. C. R. Acad. Sci. Paris 287(1978), no. 4, A183A188.Google Scholar
[Sh] Shparlinski, I. E., On vanishing Fermât quotients and a bound of the Ihara sum. Kodai Math. J. 36(2013), no. 1, 99108.http://dx.doi.org/10.2996/kmjV1364562722 Google Scholar
[Si] Silverman, J. H., Wieferich's criterion and the abc-conjecture. J. Number Theory 30(1988), no. 2,226237.http://dx.doi.Org/10.101 6/0022-314X(88)9001 9-4 Google Scholar
[T] Tenenbaum, G. Introduction á la thoérie analytique et probabiliste des nombres. 3e édition, Coll. Échelles, Belin 2008.Google Scholar
[W] Waldschmidt, M., Lecture on the abc conjecture and some of its consequences Abdus Salam School of Mathematical Sciences (ASSMS), Lahore 6th World Conference on 21st Century Mathematics(2013).http://www.math.jussieu.fr/~miw/articles/pdf/abcLahore2013VI Google Scholar
[Wa] Washington, L. C., Introduction to cyclotomicfields. Graduate Texts in Math. 83, Springer-Verlag, New York, 1997.http://dx.doi.org/10.1007/978-1-4612-1934-7 Google Scholar