Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:18:06.988Z Has data issue: false hasContentIssue false

Integrable Systems and Torelli Theorems for the Moduli Spaces of Parabolic Bundles and Parabolic Higgs Bundles

Published online by Cambridge University Press:  20 November 2018

Indranil Biswas
Affiliation:
School of Mathematics, Homi Bhabha Road, Bombay 400005, Tata Institute of Fundamental Research, India e-mail: [email protected]
Tomás L. Gómez
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolas Cabrera 15, 28049 Madrid, Spain e-mail: [email protected] [email protected]
Marina Logares
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolas Cabrera 15, 28049 Madrid, Spain e-mail: [email protected] [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Torelli theorem for the moduli space of semistable parabolic Higgs bundles over a smooth complex projective algebraic curve under the assumption that the parabolic weight systemis generic. When the genus is at least two, using this result we also prove a Torelli theoremfor the moduli space of semistable parabolic bundles of rank at least two with generic parabolic weights. The key input in the proofs is a method of J.C. Hurtubise.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[AB]Atiyah, M. F. and Bott, R., The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc.London 308(1982) 523615. http://dx.doi.org/10.1098/rsta.1983.0017 Google Scholar
[BBB]Balaji, V., del Bao, S., and Biswas, I., A Torelli type theorem for the moduli space of parabolic vector bundles over curves. Math. Proc. Cambridge Philos. Soc. 130(2001), 269280. http://dx.doi.org/10.1017/S0305004100004916 Google Scholar
[BG]Biswas, I. and Gómez, T. L., A Torelli theorem for the moduli space of Higgs bundles on a curve. Quart. Jour. Math. 54(2003),159169.http://dx.doi.org/10.1093/qmath/hag006 Google Scholar
[BGL]Biswas, I., Gothen, P. B., andLogares, M. , On moduli spaces of Hitchin pairs. Math. Proc. Cambridge Philos. Soc. 151(2011),441457. http://dx.doi.org/10.1017/S0305004111000405 Google Scholar
[BHK]Biswas, I., Holla, Y., and Kumar, C., On moduli spaces of parabolic vector bundles of rank 2 over CP1. Michigan Math.Jour.59.(2010), 467479. http://dx.doi.org/10.1307/mmj/1281531467 Google Scholar
[BNR]Beauville, A., Narasimhan, M. S. and Ramanan, S., Spectral curves and the generalized theta divisor. J. reine angew. Math. 398(1989), 169179.Google Scholar
[CRS]Ciliberto, C., Ribenboim, P., andSernesi, E., Collected papers of Ruggiero Torelli,. Queen's Papers in Pure and Applied Mathematics, 101. Queen's University, Kingston, 1995 Google Scholar
[GGM]García–Prada, O., Gothen, P. B., and Muñoz, V., Betti numbers for the moduli space of rank 3 parabolic Higgs bundles. Mem. Amer. Math. Soc. 187(2007), no.879.Google Scholar
[GLM]O. García-Prada, ,Logares, M., and Muñoz, V.,Moduli spaces of parabolic U(p, q)-Higgs bundles. Quart. Jour. Math. 60(2009), 183233.http://dx.doi.org/10.1093/qmath/han001 Google Scholar
[GL] Gómez, T. L. and Logares, M., Torelli theorem for the moduli space of parabolic Higgs bundles. Adv. Geom.11(2011),429444. Google Scholar
[Har]Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York, 1997.Google Scholar
[Hau] Hausel, T., Compactiûcation of the moduli of Higgs bundles. J. Reine Angew. Math. 503(1998),169192.Google Scholar
[Hi] Hitchin, N.J., Stable bundles and integrable systems. Duke Math.J..(1987),91114. http://dx.doi.org/10.1215/S0012-7094-87-05408-1 Google Scholar
[Hu] Hurtubise, J. C., Integrable systems and algebraic surfaces. Duke Math. J. 83(1996),1949. http://dx.doi.org/10.1215/S0012-7094-96-08302-7 Google Scholar
[Ki] Kirwan, F. C., Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes 31, Princeton University Press,1984.Google Scholar
[KM] Knudsen, F. and Mumford, D., The projectivity of the moduli space of stable curves I: preliminaries on “det” and “div”.Math. Scand. 39(1976), 1955.Google Scholar
[LM]Logares, M. and Martens, J., Moduli of parabolic Higgs bundles and Atiyah algebroids. J. reine angew. Math. 649(2010),89116.Google Scholar
[MN] Mumford, D. and Newstead, P., Periods of a modulispace of bundles on curves Amer. Jour. Math. 90(1968),12001208.http://dx.doi.org/10.2307/2373296 Google Scholar
[Ni] Nitsure, N., Cohomology of the moduli of parabolic vector bundles. Proc. Indian Acad. Sci, (Math. Sci.) 95(1986),6177. http://dx.doi.org/10.1007/BF02837250 Google Scholar
[NR] Narasimhan, M. S.and Ramanan, S., Deformations of the moduli space of vector bundles over an algebraic curve. Ann. Math.101(1975),391417. http://dx.doi.org/10.2307/1970933 Google Scholar
[Seb] Sebastian, R., Torelli theorems for moduli of logarithmic connections and parabolic bundles. Manuscr. Math. 136(2011),249271. http://dx.doi.org/10.1007/s00229-011-0446-9 Google Scholar
[Ses] Seshadri, C.S., Fibrés vectorieles sur les courbes algébriques. Asterisque 96,1982.Google Scholar
[Si] Simpson, C.,Harmonic bundles on non compact curves, Jour. Amer. Math. Soc. 3(1990),713770. http://dx.doi.org/10.1090/S0894-0347-1990-1040197-8 Google Scholar
[Tj] Tjurin, A. N., An analogue of the Torelli theorem for two-dimensional bundles over an algebraic curve of arbitrary genus. Izv. Akad. Nauk SSSR Ser. Mat.33(1969),1149–170.Google Scholar
[We] Weil, A., Zum beweis des Torelli satzes. Wiss, Nachr.Akad.. Göttingen Math.-Phys. Kl. II 2(1957)3353 Google Scholar
[Yo]Yokogawa, K.,Infinitesimal deformation of parabolic Higgs sheaves. Inter. Jour. Math. 6(1995),125148.http://dx.doi.org/10.1142/S0129167X95000092 Google Scholar