Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T09:54:16.514Z Has data issue: false hasContentIssue false

Hermite’s Constant for Function Fields

Published online by Cambridge University Press:  20 November 2018

Chris Hurlburt
Affiliation:
Center for Communications Research, 4320 Westerra Court, San Diego, CA, 92121 USA email: [email protected]
Jeffrey Lin Thunder
Affiliation:
Dept. of Mathematics, Northern Illinois University, DeKalb, IL 60115 USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We formulate an analog of Hermite's constant for function fields over a finite field and state a conjectural value for this analog. We prove our conjecture in many cases, and prove slightly weaker results in all other cases.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Bombieri, E. and Vaaler, J. On Siegel's lemma. Invent. Math. 73(1983), no. 1, 1132. http://dx.doi.org/10.1007/BF01393823 Google Scholar
[2] Conway, J. H. and Sloane, N. J. A., Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 1991.Google Scholar
[3] Evertse, J.-H. and Schlikewei, H. P., The absolute subspace theorem and linear equations with unknowns from a multiplicative group. In: Number Theory in Progress. De Gruyter, Berlin, 1999, pp. 121142.Google Scholar
[4] Hurlburt, C. and Thunder, J. L., Non-linear codes from points of bounded height. Finite Fields Appl. 13(2007), no. 2, 281292. http://dx.doi.org/10.1016/j.ffa.2005.11.001 Google Scholar
[5] Roy, D. and Thunder, J. L., An absolute Siegel's lemma. J. Reine Angew. Math. 476(1996), 126.Google Scholar
[6] Thunder, J. L., An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma. J. Reine Angew. Math. 475(1996), 167185. http://dx.doi.org/10.1515/crll.1996.475.167 Google Scholar
[7] Thunder, J. L., Siegel's lemma for function fields. Michigan Math. J. 42(1995), no. 1, 147162. http://dx.doi.org/10.1307/mmj/1029005160 Google Scholar
[8] Weil, A. Basic Number Theory. Third edition. Die Grundlehren der Mathematischen Wissenschaften 144. Springer-Verlag, New York, 1974.Google Scholar