Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:53:30.125Z Has data issue: false hasContentIssue false

Groupoïdes Automorphes Par Le Groupe Cyclique

Published online by Cambridge University Press:  20 November 2018

A. Sade*
Affiliation:
Lycée Perier, Marseille
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nous appellerons groupoïde un ensemble non vide, G, muni d'une loi (×) faisant correspondre à tout couple ordonné x, y ∊ G, au plus un élément z de G, appelé produit de x par y, et satisfaisant à la loi d'homogénéité (2).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1957

References

Citations

1. Albert, A. A., Non associative Algebras, Ann. Math. (2), 43 (1942), 696.Google Scholar
2. Haussmann, B. A., Ore, O., Theory of Quasigroups. Amer. J. Math., 59 (1937), 983.Google Scholar
3. Jordan, C., Traité des substitutions (Paris, 1870).Google Scholar
4. Kiokemeister, F. , A theory of normality for quasi-groups, Amer. J. Math., 70 (1948), 100102.Google Scholar
5. Rees, D. , On semigroups, Proceed. Camb. Phil. Soc, 36 (1940), 387.Google Scholar
6. Sade, A., Quasigroupes (Marseille, 1950).Google Scholar
7. Sade, A., Contribution à la théorie des quasigroupes, CR Acad. Sci. Paris, 237 (1953), 420422.Google Scholar
8. Scorza, G. , Gruppi Astratti (Roma, 1942).Google Scholar