Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:15:51.267Z Has data issue: false hasContentIssue false

Goursats Theorem and the Zassenhaus Lemma

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study generalized homomorphisms between two algebras, namely the binary relations whose graphs are subalgebras of the direct product of the given algebras. In 1897 Goursat proved that every subgroup of the direct product of two groups is determined by an isomorphism between factor groups of subgroups of the given groups (10, §§11, 12; 25, pp. 15, 16). A like result is here shown for a general class of algebras, including loops and quasigroups, by a method due to Riguet (22). This result is used to obtain general forms of the Zassenhaus lemma and the Jordan- Hälder-Schreier theorem for normal series (26, §9).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1958

References

1. Bates, G. E. and Kiokemeister, F., A note on homomorphic mappings of quasigroups etc., Bull. Amer. Math. Soc, 54 (1948), 1180-1185.Google Scholar
2. Birkhofr, G., Lattice Theory (rev. ed., New York, 1948).Google Scholar
3. Birkhofr, G., Universal algebra, Proc. 1st Can. Math. Congr., (1949), 310-326.Google Scholar
4. Dilworth, R. P., The structure of relatively complemented lattices, Ann. Math., 51 (1950), 348-359.Google Scholar
5. Dubreil, P. et Dubreil-Jacotin, M.-L., Théorie algébrique des relations d'équivalence, J. de Math., 104 (1939), 63-95.Google Scholar
6. Dresher, M. and Ore, O., Theory of multigroups, Amer. J. Math., 60 (1938), 705-753.Google Scholar
7. Evans, T., Homomorphisms of non-associative systems, J. Lond. Math. Soc, 24 (1949), 254-260.Google Scholar
8. Goldie, A. W., The Jordan-Hölder-Schreier theorem for general abstract algebras, Proc. London Math. Soc, 52 (1950), 107-131.Google Scholar
9. Goldie, A. W., The scope of the Jordan-Hölder-Schreier theorem in abstract algebra, Proc. London Math. Soc. (3), 2 (1952), 349368.Google Scholar
10. Goursat, É., Sur les substitutions orthogonales etc., Ann. sci. éc. norm. sup. (3), 6 (1889), 9-102.Google Scholar
11. Kelley, J. L., General Topology (New York, 1955).Google Scholar
12. Kiokemeister, F., A theory of normality for quasigroups, Amer. J. Math. 70 (1948), 99-106.Google Scholar
13. Kuntzmann, J., Contributions à l'étude des systèmes multiformes, Ann. Fac Sci. Univ. Toulouse (4) 3 (1939), 155-193.Google Scholar
14. Kuratowski, C., Topologie I(Warszawa, 1952).Google Scholar
15. Kurosh, A. G., The Theory of Groups I (New York, 1955).Google Scholar
16. Lambek, J., Groups and herds, abstract 145t, Bull. Amer. Math. Soc, 61 (1955), 58.Google Scholar
17. Lorenzen, P., Ueber die Korrespondenzen einer Struktur, Math. Zeitschr., 60 (1954), 6165.Google Scholar
18. MacLane, S., Duality for groups, Bull. Amer. Math. Soc, 56 (1950), 485-516.Google Scholar
19.Mal'cev, A. I., On the general theory of algebraic systems, Mat. Sbornik N.S., 35 (1954), 3-20.Google Scholar
20. Murdoch, D. C., Quasigroups which satisfy certain generalized associative laws, Amer. J. Math., 61 (1939), 509-522.Google Scholar
21. Pontrjagin, L., Topological Groups (Princeton, 1946).Google Scholar
22. Riguet, J., Relations binaires etc., Bull. Soc. Math. France, 76 (1948), 114-155.Google Scholar
23. Riguet, J.,Quelques propriétés des relations difonctionelles, C.R. Acad. Sci. Paris, 230 (1950), 1999-2000.Google Scholar
24. Smiley, M. F.,Notes on left divisor systems with left units, Amer. J. Math., 74 (1952), 679- 682.Google Scholar
25. Threlfall, W. and Seifert, H., Bewegungsgruppen des dreidimensionalen spharischen Raumes, Math. Ann., 104 (1931), 1-70.Google Scholar
26. Zassenhaus, H., The Theory of Groups (New York, 1949).Google Scholar