Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T15:31:51.708Z Has data issue: false hasContentIssue false

Global existence of the strong solution to the 3D incompressible micropolar equations with fractional partial dissipation

Published online by Cambridge University Press:  13 September 2022

Yujun Liu*
Affiliation:
Department of Mathematics and Computer, Panzhihua University, Panzhihua 617000, P. R. China

Abstract

In this paper, we considered the global strong solution to the 3D incompressible micropolar equations with fractional partial dissipation. Whether or not the classical solution to the 3D Navier–Stokes equations can develop finite-time singularity remains an outstanding open problem, so does the same issue on the 3D incompressible micropolar equations. We establish the global-in-time existence and uniqueness strong solutions to the 3D incompressible micropolar equations with fractional partial velocity dissipation and microrotation diffusion with the initial data $(\mathbf {u}_0,\ \mathbf {w}_0)\in H^1(\mathbb {R}^3)$.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Liu is supported by the Panzhihua University Foundation (Grant No. 035200075).

References

Barbato, D., Morandin, F., and Romito, M., Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system . Anal. PDE 7(2014), 20092027.CrossRefGoogle Scholar
Chen, Q. and Miao, C., Global well-posedness for the micropolar fluid system in critical Besov spaces . J. Differential Equations 252(2012), 26982724.CrossRefGoogle Scholar
Constantin, P. and Foias, C., Navier–Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1989.Google Scholar
Cowin, S. C., Polar fuids . Phys. Fluids 11(1968), 19191927.CrossRefGoogle Scholar
Doering, C. and Gibbon, J., Applied analysis of the Navier–Stokes equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Dong, B. and Chen, Z., Regularity criteria of weak solutions to the three-dimensional micropolar flows . J. Math. Phys. 50(2009), 103525.CrossRefGoogle Scholar
Dong, B., Li, J., and Wu, J., Global well-posedness and large-time decay for the 2D micropolar equations . J. Differential Equations 262(2017), 34883523.CrossRefGoogle Scholar
Dong, B., Wu, J., Xu, X., and Ye, Z., Global regularity for the 2D micropolar equations with fractional dissipation . Discrete Contin. Dyn. Syst. Ser. A 38(2018), 41334162.CrossRefGoogle Scholar
Dong, B. and Zhang, Z., Global regularity of the 2D micropolar fluid flows with zero angular viscosity . J. Differential Equations 249(2010), 200213.CrossRefGoogle Scholar
Erdogan, M. E., Polar effects in the apparent viscosity of suspension . Rheol. Acta 9(1970), 434438.CrossRefGoogle Scholar
Eringen, A. C., Theory of micropolar fuids . J. Math. Mech. 16(1966), 118.Google Scholar
Eringen, A. C., Micropolar fluids with stretch . Int. J. Eng. Sci. 7(1969), 115127.CrossRefGoogle Scholar
Ferreira, L. and Precioso, J., Existence of solutions for the 3D-micropolar fluid system with initial data in Besov–Morrey spaces . Z. Angew. Math. Phys. 64(2013), 16991710.CrossRefGoogle Scholar
Ferreira, L. and Villamizar-Roa, E., Micropolar fluid system in a space of distributions and large time behavior . J. Math. Anal. Appl. 332(2007), 14251445.CrossRefGoogle Scholar
Galdi, G. and Rionero, S., A note on the existence and uniqueness of solutions of micropolar fluid equations . Int. J. Eng. Sci. 14(1977), 105108.CrossRefGoogle Scholar
Katz, N. and Pavlovic, N., A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyperdissipation . Geom. Funct. Anal. 12(2002), 355379.CrossRefGoogle Scholar
Lieb, E. and Loss, M., Analysis, American Mathematical Society, Providence, RI, 2001.Google Scholar
Lions, J., Quelques mthodes de rsolution des problemes aux limites non linaires, Dunod, Paris, 1969.Google Scholar
Lukaszewicz, G., On nonstationary flows of asymmetric fluids . Rend. Accad. Naz. Sci. XL Mem. Mat. 12(1988), 8397.Google Scholar
Lukaszewicz, G., On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids . Rend. Accad. Naz. Sci. XL Mem. Mat. 13(1989), 105120.Google Scholar
Lukaszewicz, G., Micropolar fluids: theory and applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999.CrossRefGoogle Scholar
Majda, A. J. and Bertozzi, A. L., Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Popel, S., Regirer, A., and Usick, P., A continuum model of blood flow . Biorheology 11(1974), 427437.CrossRefGoogle ScholarPubMed
Stokes, V. K., Theories of fluids with microstructure, Springer, New York, 1984.CrossRefGoogle Scholar
Tao, T., Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation . Anal. PDE 2(2009), 361366.CrossRefGoogle Scholar
Temam, R., Navier–Stokes equations: theory and numerical analysis, AMS Chelsea Publishing and American Mathematical Society, Providence, RI, 2000.Google Scholar
Wu, J., Generalized MHD equations . J. Differential Equations 195(2003), 284312.CrossRefGoogle Scholar
Xue, L., Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations . Math. Methods Appl. Sci. 34(2011), 17601777.CrossRefGoogle Scholar
Yamaguchi, N., Existence of global strong solution to the micropolar fluid system in a bounded domain . Math. Methods Appl. Sci. 28(2005), 15071526.CrossRefGoogle Scholar
Yamazaki, K., Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity . Discrete Contin. Dyn. Syst. 35(2015), 21932207.CrossRefGoogle Scholar
Yang, W., Jiu, Q., and Wu, J., The 3D incompressible Navier–Stokes equations with partial hyperdissipation . Math. Nachr. 292(2019), 18231836.CrossRefGoogle Scholar
Yang, W., Jiu, Q., and Wu, J., The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation . J. Differential Equations 266(2019), 630652.CrossRefGoogle Scholar
Yuan, B., On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space . Proc. Amer. Math. Soc. 138(2010), 20252036.CrossRefGoogle Scholar
Yuan, B., Regularity of weak solutions to magneto-micropolar fluid . Acta Math. Sci. 30B(2010), 14691480.Google Scholar