Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:52:15.586Z Has data issue: false hasContentIssue false

Geometric Invariants of Cuspidal Edges

Published online by Cambridge University Press:  20 November 2018

Luciana de Fátima Martins
Affiliation:
Departamento de Matemática, IBILCE-UNESP-Univ Estadual Paulista, R. Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil e-mail: [email protected]
Kentaro Saji
Affiliation:
Department of Mathematics, Graduate School of Science, Kobe University, Rokko, Nada, Kobe 657-8501, Japan e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a normal form of the cuspidal edge that uses only diffeomorphisms on the source and isometries on the target. Using this normal form, we study differential geometric invariants of cuspidal edges that determine them up to order three. We also clarify relations between these invariants.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Arnold, V. I., Gusein-Zade, S. M., and Varchenko, A. N., Singularities of differentiable maps. Vol. 1, Monographs in Mathematics, 82, Birkhäuser, Boston, 1985.Google Scholar
[2] Bruce, J. W. and West, J. M., Functions on a crosscap. Math. Proc. Cambridge Philos. Soc. 123(1998), 1939.http://dx.doi.org/10.1017/S0305004197002132 Google Scholar
[3] Dias, F. S. and Tari, F., On the geometry of the cross-cap in the Minkowski 3-space and binary differential equations. Tohoku Math. J., to appear.Google Scholar
[4] Fukui, T. and Hasegawa, M., Fronts of Whitney umbrella - a differential geometric approach via blowing up. J. Singul. 4(2012), 3567.Google Scholar
[5] Garcia, R., Gutierrez, C., and Sotomayor, J., Lines of principal curvature around umbilics and Whitney umbrellas. Tohoku Math. J. 52(2000), 163172. http://dx.doi.org/10.2748/tmj/1178224605 Google Scholar
[6] Hasegawa, M., Honda, A., Naokawa, K., Umehara, M., and Yamada, K., Intrinsic invariants of cross caps. Selecta Math. 20(2014), 769785. http://dx.doi.org/10.1007/s00029-013-0134-6 Google Scholar
[7] Izumiya, S., Legendrian dualities and spacelike hypersurfaces in the lightcone. Moscow Math. J. 9(2009),325357.Google Scholar
[8] Kokubu, M. , Rossman, W., Saji, K., Umehara, M., and Yamada, K., Singularities of flat fronts in hyperbolic 3-space. Pacific J. Math. 221(2005), 303351.http://dx.doi.org/10.2140/pjm.2005.221.303 Google Scholar
[9] Martins, L. F. and Nuño-Ballesteros, J. J., Contact properties of surfaces in R3with corank 1 singularities. Tohoku Math. J. 67(2015), no. 1, 105124. http://dx.doi.org/10.2748/tmj/1429549581 Google Scholar
[10] Martins, L. F., Saji, K., Umehara, M., and Yamada, K., Behavior of Gaussian curvature around non-degenerate singular points on wave fronts. To appear in: Proceedings of Geometry and topology of manifold—The 10th geometry conference for the friendship of China and Japan, 2014. arxiv:1308.2136 Google Scholar
[11] Murata, S. and Umehara, M., Flat surfaces with singularities in Euclidean 3-space. J. Differential Geom. 82(2009), 279316.Google Scholar
[12] Nishimura, T., Whitney umbrellas and swallowtails. Pacific J. Math. 252(2011), 459471.http://dx.doi.org/10.2140/pjm.2011.252.459 Google Scholar
[13] Oliver, J. M., On pairs of foliations of a parabolic cross-cap. Qual. Theory Dyn. Syst. 10(2011), 139166.http://dx.doi.org/10.1007/s12346-011-0042-0 Google Scholar
[14] Oset Sinha, R. and Tari, F., ‘Projections of surfaces in R4 to R3 and the geometry of their singular images. Revista Matemática Iberoamericana, to appear.Google Scholar
[15] Saji, K., Umehara, M., and Yamada, K., The geometry of fronts. Ann. of Math. 169(2009), 491529.http://dx.doi.org/10.4007/annals.2009.169.491 Google Scholar
[16] Saji, K., Umehara, M., and Yamada, K., Ak singularities of wave fronts. Math. Proc. Cambridge Philos. Soc. 146(2009), 731746.http://dx.doi.org/10.1017/S0305004108001977 Google Scholar
[17] Saji, K., Umehara, M., and Yamada, K., The duality between singular points and inflection points on wave fronts. Osaka J. Math. 47(2010), 591607.Google Scholar
[18] Saji, K., Umehara, M., and Yamada, K., A2-singularities of hypersurfaces with non-negative sectional curvature in Euclidean space. Kodai Math. J. 34(2011), 390409.http://dx.doi.org/10.2996/kmj/1320935549 Google Scholar
[19] Tari, F., On pairs of geometric foliations on a cross-cap. Tohoku Math. J. 59(2007), no. 2, 233258.http://dx.doi.org/10.2748/tmj/1182180735 Google Scholar
[20] West, J. M., The differential geometry of the cross-cap. Ph.D. thesis, Liverpool University, 1995.Google Scholar
[21] Whitney, H., The singularities of a smooth n-manifold in (2n − 1)-space”. Ann. of Math. 45(1944),247293. http://dx.doi.org/10.2307/1969266 Google Scholar